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ABSTRACT

IMAGE FEATURES FOR TUBERCULOSIS CLASSIFICATION

IN DIGITAL CHEST RADIOGRAPHS

by

Brian Hooper

June 2020

Tuberculosis (TB) is a respiratory disease which affects millions of people each

year, accounting for the tenth leading cause of death worldwide, and is especially

prevalent in underdeveloped regions where access to adequate medical care may be

limited. Analysis of digital chest radiographs (CXRs) is a common and inexpensive

method for the diagnosis of TB; however, a trained radiologist is required to interpret the

results, and is subject to human error. Computer-Aided Detection (CAD) systems are a

promising machine-learning based solution to automate the diagnosis of TB from CXR

images. As the dimensionality of a high-resolution CXR image is very large, image

features are used to describe the CXR image in a lower dimension while preserving the

elements in the CXR necessary for the detection of TB. In this thesis, I present a set of

image features using Pyramid Histogram of Oriented Gradients, Local Binary Patterns,

and Principal Component Analysis which provides high classifier performance on two

publicly available CXR datasets, and compare my results to current state-of-the-art

research.
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CHAPTER I

INTRODUCTION

Tuberculosis (TB) is a respiratory disease caused by an infection of the bacteria

Mycobacterium Tuberculosis in the lungs. TB can be contracted through the air by

exposure to a person already infected with TB. In 2018, it was estimated that 10 million

people contracted TB, and approximately 1.4 million people die from the disease every

year. As of 2018, TB accounted for the tenth leading cause of death worldwide and the

highest leading cause of death from a single infectious agent. TB is especially prevalent

in underdeveloped regions, with eight countries accounting for two-thirds of new TB

cases: India, China, Indonesia, The Philippines, Pakistan, Nigeria, Bangladesh, and South

Africa [1].

Currently, the primary method for diagnosing tuberculosis is the detection of

Mycobacterium Tuberculosis using sputum smear microscopy; however, this process

can take several days or weeks for the sample to be identified, and the test can suffer

from a high number of false positives. As such, it is frequently used in combination with

the analysis of chest radiographs (CXRs), especially due to the wide availability and

relative low cost of digital radiography machines. However, CXRs still require analysis

by a trained radiologist, and are subject to human error and are dependent on the level

of expertise of the radiologist. The difficulty in CXR analysis is compounded by the

varying manifestations of TB on chest radiographs, with both the texture and geometry

of the lungs affected. Overlapping tissue structures in the CXR increases the complexity

of interpretation. Other methods, such as blood tests, can be more reliable than CXR

diagnosis but are generally much more costly and time consuming, and so are much less

commonly used than CXRs [2].
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There is currently interest in applying Computer-Aided Detection (CAD) systems

to the detection of tuberculosis and other respiratory diseases such as pneumonia. In

regions lacking a sufficient number of trained radiologists, CAD systems could be used

to help screen patients and highlight those with the greatest need for further treatment,

and greatly reduce the time required to screen a large population [2]. However, much

of the current research in developing CAD systems for use with CXRs is dedicated to

early detection of lung cancer, with a comparatively small number of studies dedicated

to TB and other similar pathologies [3]. Typically, CAD systems work by first pre-

processing the CXR images, segmenting the region of interest (ROI), extracting image

features, and classifying the disease [4]. Publicly available CXR datasets devoted to the

diagnosis of TB and other pathologies have contributed to the increase in studies of CAD

systems. Image feature descriptors can be used to reduce the dimensionality of CXR

images, and increase the performance of a classifier system. The goal of this thesis is to

develop a set of image features appropriate for the efficient and accurate classification

of Tuberculosis in CXR images. While my primary focus will be on image features, I

will study and compare different machine learning methods for image classification in

order to effectively evaluate my results. I will test my feature descriptors and classifier

models on two publicly available CXR datasets provided by Jaeger et al. [5]. The rest

of this thesis is organized as follows: In Chapter II, I introduce current methods for TB

diagnosis, CAD systems, and discuss current research in CAD systems for TB diagnosis.

In Chapter III, I present the background of image feature descriptors. Chapter IV provides

background information on Machine Learning classifier models. In Chapter V, I describe

the descriptor and classifier models, experimental results, and analysis of results. Finally,

in Chapter VI, I present my conclusions on the use of image feature descriptors for TB

diagnosis in CXR images.
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CHAPTER II

BACKGROUND

Tuberculosis Diagnosis

There are currently many methods for the diagnosis of Tuberculosis (TB), including

sputum smear microscopy, and analysis of chest radiographs (CXRs). CXR diagnosis

benefits from quick results, low cost, and ease of use. CXR images contain a wide range

of information about a patients health, and can be used to detect various illnesses such as

Pneumonia or lung cancer [3]. However, accurate assessment of a CXR is challenging,

requiring a highly trained specialist to correctly interpret the image. Even expert analysis

is not perfect, with one study from 1999 reporting that 19% of pulmonary nodules were

undetected by expert radiologists [6].

Many factors contribute to the difficulty of analyzing a CXR for the presence of

TB, including varying manifestations of TB, differences in image resolution and contrast,

noise, and overlapping tissue structures. The manifestation of TB on a CXR image is

complex, with a large number of abnormalities in the lung region that may or may not be

present. These abnormalities include texture abnormalities, such as changes in appearance

or structure, focal abnormalities, such as the presence of pulmonary nodules, and shape

abnormalities, meaning changes in the lung contour [7].

Common CXR imaging manifestations of TB include lung cavitations, pulmonary

consolidations, bilateral infiltrates, and pleural effusion, which can appear as blunted

costophrenic angles [8]. The difficulty of TB diagnosis is compounded by differences in

manifestations between active infections and inactive infections, meaning either patients

who have been previously treated for TB, or patients who have been exposed to small
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colonies of TB bacteria which remains inactive in the body. Patients with inactive TB

are at risk for TB infection if their immune system becomes compromised. Specifically,

patients with Human Immunodeficiency Virus (HIV) are at significantly higher risk for

TB, with TB accounting for one of the leading causes of death among people infected

with HIV [1].

Computer-Aided Detection

In recent years, there has been an interest in the development of Computer-Aided

Detection (CAD) systems for the diagnosis of TB. Such systems would reduce the

time it takes to screen a large population, and more effectively filter patients with the

highest need for further treatment. There are currently multiple commercial available

CAD systems for the analysis of CXR images, including CAD4TB and Riverain [9].

However, because of the complexity of CXR images, the development of an effective

CAD system is challenging, and the majority of commercially available CAD systems are

dedicated to the detection of lung cancer, with the research towards detecting other types

of pathologies relatively limited. Additionally, current commercial CAD systems do not

match the performance of state of the art research systems, with one review of CAD4TB

performance showing an AUC ranging from 0.71 to 0.84. A new version of CAD4TB,

released in 2019, used a deep learning model trained on a dataset of 500 images from

Pakistan, and achieved a specificity of 98% and a sensitivity of 90% [10].

Typically, CAD systems work in the following manner: pre-processing,

segmentation, feature extraction, and classification. Segmentation, or region-of-interest

extraction, isolates the lung regions within the image. This allows the feature extraction

and classification steps to only act on those regions within the image that contribute to

a positive or negative diagnosis, removing all other regions in the image that only act
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as noise. Automatic segmentation of lung regions is one of the most difficult aspect of

CAD systems, and as such, there have been many studies that focus on lung segmentation

methods. [5] [11].

Pre-processing includes any kind of image transformation that occurs prior to

segmentation or feature extraction, such as resizing, cropping, rotation, equalization, or

other image processing technique. Because contrast has a large influence on the detection

of lung abnormalities, contrast enhancement can be applied to more effectively highlight

these regions. Pre-processing steps can be an important factor in reducing the overall

noise in a CXR image. Noise can be characterized in two categories: radiographic noise,

resulting from variations in radiographic techniques and equipment, and anatomical

noise, referring to the tissue structures, such as ribs or vascular structures, that surround

and overlap the lungs. In CXR images, anatomic noise contributes significantly to

the difficulty in detecting pulmonary nodules [12]. In addition to noise reduction,

segmentation is important in defining the outer shape of the lung region. Deformations

in lung shape, such as cavities, can contribute to the diagnosis of TB. In general,

segmentation methods can be grouped into two categories: rule-based methods, and

machine learning based methods. Rule-based methods include segmentation methods

that use location, texture, and shape features to define regions of interest algorithmically.

The category also includes deformable model based methods. Machine learning based

methods use supervised or unsupervised learning to classify pixels as belonging to a

particular anatomical structure.

As accurate classification of TB in CXR images requires high-resolution images,

the dimensionality of the image causes challenges in training a classifier system. For

example, a 1000 by 1000 pixel image contains one million dimensions. As such, methods

for dimensionality reduction, such as image feature descriptors, are typically used to
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reduce the size of the dataset required to train a classifier. I describe various feature

descriptors in Chapter III. In some systems, such as Convolutional Neural Networks,

feature extraction and classification are combined into one step.

Related Work

In recent years, various CAD systems have been developed using feature extraction

and image classification methods for CXR diagnosis. Vajda et al. [8] considered three

feature sets for classification of segmented CXR images from the Montgomery and

Shenzhen CXR datasets [5]. Set A consisted of shape, edge, and texture descriptors, with

an overall vector length of 192. Set B consisted of 595 intensity, edge, texture, color, and

shape moment features. Set C contained only shape measurements, with a much smaller

set of only 12 features. Using a neural-network based classifier on the Montgomery

dataset, the authors obtained an AUC of 0.87, 0.72, 0.71 on sets A, B, and C, respectively.

With the Shenzhen dataset, an AUC of 0.99, 0.90, and 0.77 was achieved.

Jaeger et al. [5] created an effective algorithm for automatic lung boundary

segmentation. Using a content-based image retrieval method combined with a set of

manually segmented training images, the authors matched patient CXRs to the closest

matching training images, and then warped the patient CXR image to the training set

using a nonrigid registration algorithm. This work provided the segmentation used in the

Montgomery and Shenzhen datasets.

Hogweg et al. [7] used lung sub-segmentation to extract images features from four

sections for each lung: lower, middle, central, and upper. Using two datasets consisting

of 200 CXR images each, the researchers achieved a best AUC for TB detection of 0.90.

Automatic segmentation was achieved using a combination of pixel classification and

shape model information. This method of incorporating spatial data is promising for the
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development of a CAD system because TB can show as present different anomalies on

a CXR. However, the precise segmentation requirements of this method make its use on

low-quality images challenging.

Xue et al. [13] proposed a CAD system to distinguish between frontal and lateral

CXR images. Using a combination of image profile, body shape, Pyramid Histogram

of Oriented Gradients (PHOG), and contour-based shape features, the authors achieved

a very high accuracy of 99.9% on a CXR dataset containing 8300 images provided by

University of Indiana School of Medicine .

Carrillo-de-Gea et al. [14] created a CAD system to classify healthy lungs from

those with any form of non-normality or pathology present based on an ensemble of

location-specific classifiers. For their training and test data, the researchers collected

a private dataset of CXR images from 25 male patients and 23 female patients. By

applying Local Binary Pattern (LBP) features to the image, they created an ensemble

of classifiers by training individual classifiers on local lung regions. With this method, the

they achieved a highest accuracy of 70% . While the overall accuracy is low, this result is

significant given that the dataset consisted of only 48 samples.

More recently, deep convolutional neural networks have been applied to TB

detection in CXR images. Hwang et al. [15] used transfer learning on a deep CNN with

the AlexNet architecture, achieving an accuracy of 67% on the Montgomery dataset, and

an accuracy of 83% on the Shenzhen dataset. Pasa et al. [16] developed a deep-learning

model with significantly lower hardware requirements than previous CNN-based CAD

systems. The authors trained the model using the Montgomery and Shenzhen datasets and

achieved an AUC of 0.811 and 0.9, respectively. Compared to Hwang et al., the authors

achieved similar classifier performance, but with a more efficient CNN model and without

using transfer learning.
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Similarly, CNNs have been used as feature extraction methods, while using a

traditional model for classification. Allaouzi and Ahmed [17] used a pre-trained CNN

as a feature extractor on CXR images from the ChestX-ray14 and CheXpert datasets. The

authors used the DenseNet-121 CNN architecture with transfer learning from ImageNet

as a feature extractor to give a feature vector of length 1024. For classification, they used

a Logistic Regression model and to predict the probability that each sample belonged to

each of the 14 labels in the ChestX-ray14 and CheXpert datasets. Metrics were calculated

by taking an average of the binary classification accuracy across all labels. For the

ChestX-ray14 dataset, the researchers obtained an AUC of 0.88, and an AUC of 0.81

on the CheXpert dataset. Lopes and Valiati [18] used pre-trained convolutional network

as a feature extractor to train a support vector machine classifier, and achieved an ACC of

83% and an AUC of 0.92 on the Montgomery dataset and an ACC of 85% and an AUC of

0.93 on the Shenzhen dataset. Overall, feature descriptor based methods have been more

effective for TB classification than CNN-based methods, with generally lower hardware

requirements for both training and classification.
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CHAPTER III

IMAGE FEATURE DESCRIPTORS

This chapter describes the image feature descriptors used for my experiments.

Because the dimensionality of a CXR images is high (1 million data points for a 1000 by

1000 grayscale image), image features are extracted to attempt to describe the image in a

lower dimension. I experimented with various feature extraction method in an attempt

to find a set of feature descriptors that is able to effectively classify the presence of

Tuberculosis in a CXR image with a minimum number of features.

Feature extraction is closely related to the problem of compression, that is, what

is the minimum number of dimensions that can be used to represent the data, while still

preserving some necessary element of the data (in this case, the presence or lack of TB

manifestations on CXR images) [19]. In many cases, better classifier performance can

be achieved with a selection of features than with the original data. This may be due the

curse of dimensionality, the idea that as the dimensionality of your data increases, the

number of samples required to effectively train a classifier increases exponentially.

A distinction should be made between feature selection, and feature extraction.

In feature selection, a subset of features in a data is taken, and the rest of the features

are discarded, with the idea to keep only the features that contribute the most to the

correct classification and reduce unnecessary noise. Typically, feature selection involves

some form of feature ranking, where the variables are ordered by some measure of

their relevance for classification. In feature extraction, new features that describe some

aspect of the data, such as texture or shape, are generated from the original data [20].

Filters, transformations, statistical measures, shape and texture analysis, and interest point

detection are all forms of feature extraction methods.
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Pyramid Histogram of Oriented Gradients

The Pyramid Histogram of Oriented Gradients (PHOG) feature descriptor is

a variation of the Histogram of Oriented Gradients (HOG) image descriptor, which

computes the occurrence of gradient orientation over a grid of cells in an image. The

original HOG descriptor was developed in 2005 and has shown to be useful for pedestrian

detection and handwriting recognition [21]. PHOG was first described by Bosch et

al in 2007 [22]. The PHOG descriptor divides the image into sub-regions at various

resolutions, and calculates the HOG descriptor for each spatial pyramid, which is then

concatenated into one feature vector [23]. Both PHOG and HOG output a scale-invariant

feature vector of fixed size depending on the input parameters, which makes it suitable for

using as input to a classifier.

The HOG descriptor computes occurrences of gradient orientation over a dense grid

of uniformly space cells. Across the whole image, the horizontal and vertical gradients

are calculated for each pixel. This is achieved by first applying a Sobel filter to the image

with a kernel size of 1, and then computing the magnitude and direction of the gradient

for each pixel using equations 3.1 and 3.2, respectively, where gx and gy represent the

Sobel filtered value for the pixel in the horizontal and vertical directions.

g =
√
g2x + g2y (3.1)

θ = arctan
gy
gx

(3.2)

Figure 1 shows a subset of pixel gradients computed over a CXR image. For each

8x8 cell in the image, a single gradient is shown, with the magnitude represented by

the length of the line and the line running perpendicular to the direction of the gradient.

Numerically, I use unsigned gradients with a range of 0 to 180 degrees to represent the
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angle of the gradient, with a gradient and its negative represented by the same direction.

In practice, this method has been shown to be more effective than using signed gradients

[21].

(a) Original Image (b) Gradient orientations

FIGURE 1: Visualization of Histogram of Oriented Gradients feature descriptor.

In order to encode location data into the feature descriptor, we divide the image into

a uniform grid of fixed-size cells, and compute a histogram of gradient orientations for

each cell. These histograms are concatenated together to provide the final HOG descriptor

vector. For my experiments, I used a cell size of 8 by 8 pixels. While somewhat arbitrary,

this cell size is sufficient to detect the smallest features necessary for the recognition of

TB, provided that the resolution of the CXR images is sufficiently large, and my initial

experimentation showed little change in classification accuracy with smaller or larger cell

sizes.

As we have 2 values per pixel (gradient and magnitude), using an 8x8 grid gives

us 128 pixel values per cell. Each histogram consists of 9 bins, corresponding to angles

0-19, 20-39, etc. Each pixel’s magnitude is added to the respective bin based on its

magnitude. For example, a pixel with angle 25 and magnitude 5 would have 5 added to

the second bin in the histogram. Before each cell’s histograms are concatenated together,

the histograms are normalized relative to each other. The purpose of this step is to reduce
11



the variance from lighting across the image. For normalization, we use a sliding window

consisting of a 2x2 grid of cells, normalizing the block of four cells together, and moving

the window by one cell across the image until all histograms are normalized. Finally,

the histograms are concatenated together to provide the final HOG feature vector. In the

PHOG algorithm, HOG features are computed over an image pyramid, by filtering and

resampling the image at different resolutions, computing HOG features at each resolution,

and concatenating the results into a final feature vector. Figure 2 shows an example of an

image pyramid resampled at 4 levels.

FIGURE 2: An image pyramid [24].

Local Binary Patterns

The Local Binary Patterns (LBP) feature descriptor is a local texture descriptor that

encodes each pixel in an image by thresholding its intensity based on its eight neighbors.

For each pixel, a new value is computed by creating an vector of 8 bits, assigning a value

to each bit by comparing the pixel to each of its eight neighbors, starting with the upper

left pixel and moving clockwise. For each neighbor, a value of 1 is assigned if the center

pixel has an intensity higher than or equal to the neighbor, and a value of 0 is assigned if
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the pixel has an intensity less than the neighbor. This corresponds to an 8-bit value, which

is assigned as the new value for the pixel in the output mask. Figure 3 shows the mask

created by the LBP algorithm.

FIGURE 3: Local Binary Patterns mask computed for a segmented image in the
Shenzhen dataset.

Because the feature descriptor does not reduce the dimensionality of the image, we

compute a histogram of pixel values, resulting in a feature vector of length 256. As the

segmented CXR images have large regions of black pixels, we remove this value from the

histogram, and normalize the final length 255 histogram.

As the final feature vector of LBP is a histogram, any location-based data in the

image is lost. Instead of computing one histogram over the entire image, the LBP mask

can be divided into segments, a histogram can be computed for each segment, and then

each histogram can be concatenated together to create a single output vector. This method

is similar to the grid of histograms used in the HOG descriptor. To reduce the length

of the output vector, a smaller number of bins for each histogram can be used. As the

location of texture features can be an indicator of TB infection, incorporating location

data into the LBP feature descriptor should improve classifier performance.
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Autoencoder Networks

An Autoencoder network is type of artificial neural network that uses unsupervised

learning to re-create its input as its output, while passing the data through one or more

smaller hidden layers. Functionally, an autoencoder is similar to a multi-layer perceptron

model. The first half of the network acts as an encoder, mapping the input to a smaller

feature space, while the second half acts as a decoder, attempting to re-create the input

data based on the encoded data. For this reason, autoencoders are typically symmetrical,

with the decoder consisting of the same steps as the encoder, but in reverse. If the central

hidden layer (acting as the output of the encoder, and the input to the decoder) has

significantly smaller dimensionality than the original data, the encoded data should

represent the data most important for the reconstruction of the original data. As such,

autoencoder networks are an effective method for both image feature extraction and

data compression. Figure 4 shows an example autoencoder model with three fully

connected hidden layers, with the original data consisting of 5 variables and the encoded

data consisting of two variables. The first autoencoder network was proposed by D.E.

Rumelhart et al. in 1985, and has been used successfully for both dimensionality

reduction and compression [25]. As a method for dimensionality reduction, an optimally

trained autoencoder produces an encoding similar to principal component analysis (PCA)

[26].
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FIGURE 4: A schematic of an autoencoder network with three fully connected hidden
layers.

Speeded-Up Robust Features

Speeded up robust features (SURF) are a faster variation of the Scale Invariant

Feature Transform (SIFT) algorithm, which detects local features in an image. Like

SIFT features, SURF is scale-invariant, meaning the same interest points can be found

at different image sizes. In SURF, interest points are detected using a Hessian matrix

approximation, and for each interest point, a local feature descriptor containing 64

features is computed. An full description of the SURF algorithm is given in [27]. SURF

features, and other similar blob-detection algorithms, are commonly used in image-

retrieval systems, where a compact description of the image is required. However,

because the number of local features extracted using SURF varies for each image,

it cannot be directly used in a classifier model that takes a fixed-length vector as an

input. For this reason, SURF features are typically used for classification by quantizing

detected features into a fixed set of clusters, using K-Means or another similar clustering

algorithm. This method is commonly used in content-based image retrieval applications

[28] and has been successfully applied to medical image classification [29].
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Principal Component Analysis

Generally, the main purpose of feature extraction is to reduce the dimensionality

of the image, while preserving the elements that contribute the most to successful

classification. As such, we can use well-known dimensionality reduction methods such

as Principal Component Analysis (PCA). The PCA method was first proposed in the

early 20th century, but was not commonly used until advances in computing power made

working with large dimension datasets possible [30]. PCA creates an orthogonal linear

transformation of the data, by deriving a set of principal components which maximize the

variance in the data.

The operation of the PCA algorithm as as follows: given a set of n samples, each

with m dimensions which we want to reduce to k dimensions, we take a n by m matrix

X such that each row represents a single sample and each column represents a single

variable. The covariance matrix Cx can be calculated as Cx = 1
n−1(X − X̄)(X − X̄)T .

Given that Cx represents a linear transformation of X, we can calculate the eigenvalues

and corresponding eigenvectors of the transformation. Eigenvalues and eigenvectors

represent properties of linear transformations in matrices. Specifically, an eigenvector

is a vector measurement of the direction of a transformation, and eigenvalues represent a

scalar measurement of the factor by which an eigenvector is scaled. Formally, eigenvalues

and eigenvectors represent a property of a matrix such that Ax = λx, where A represents

a matrix, x represents the eigenvector, and λ represents the corresponding eigenvalues.

By ranking the eigenvalues from largest to smallest, we can take the first k eigenvectors,

which represent the k most significant components, giving us a n by k matrix E. Finally,

we transform our original dataset X by taking the transpose of the eigenvector matrix

multiplied by our original matrix X . Therefore, given a set of original values, we can

substitute a set of optimal derived principal components with lower dimensionality than
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the original dataset. PCA is often used by reducing the dataset to two or three principal

components, which allows a higher dimension dataset to be visualized in two or three

dimensions.

Other Feature Descriptors

In addition to the feature descriptors mentioned above, I examined Zernick

Moments, Gabor Filters, Gray-Level Co-Occurence Matrix, Haralick texture features,

Determinant of Hessian, and Oriented Fast and Rotated BRIEF features. However, the

performance of my classification experiments with these descriptors was poor, as such, I

will not describe their operation in this paper.
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CHAPTER IV

IMAGE CLASSIFICATION

In this chapter, I describe the various machine learning models used in this thesis.

While I will attempt to defend my choice to use each model, when selecting a classifier,

there is often little indication of the potential for success of one model compared to

another, as such, I will use the models that have proven to be successful in both CXR

classification and other computer vision applications.

Classification Metrics

To evaluate the performance of the classifier models, I used accuracy (ACC) and

area under the curve (AUC). In most image classification systems, ACC is the primary

metric of classifier performance [3]. However, the simple ratio of correctly classified

samples to incorrectly classified samples in the dataset is not sufficient for working

with medical data. Specifically, we cannot have an effective classifier that has a chance

of classifying a patient infected with TB as healthy, and so it is significantly more

important to minimize the number of false negatives than it is to minimize false positives.

Therefore, we calculate the receiver operating characteristic (ROC) curve, which plots the

ratio of the true positive rate of classified samples to the false positive rate:

TPR =
TP

TP + FN
(4.1)

FPR =
FP

FP + TN
(4.2)

From the ROC curve, we can calculate the area under the ROC curve (AUC) across

the unit square, which provides a useful metric of classifier performance between 0 and 1:
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AUC =

∫ ∞
−∞

TPR(T )FPR′(T )dT (4.3)

AUC better encapsulates the performance of the classifier for medical purposes

than by ACC alone [31]. Additionally, ACC and AUC are commonly used in image

classification literature, so this allows me to preserve compatibility with other authors

work. Therefore, for all classification experiments, I consider both ACC and AUC.

Multi-Layer Perceptron

The Multi-Layer perceptron (MLP) classifier is the most common type of artificial

neural network classifier, consisting of fully connected layers of artificial neurons (nodes).

MLP classifiers have been used extensively for image recognition tasks, including

classification of TB in CXR images by Vajda et al. [8]. Therefore, the use of this classifier

will allow me to easily compare the performance of my set of image features to other

current research. A MLP always contains an input layer with a number of nodes equal to

the dimensionality of the data, an output layer, and one or more hidden layers, containing

a variable number of nodes. There is evidence that any mathematical model can be

represented with a single hidden layer, and my empirical testing showed no increase

in classifier performance from using multiple hidden layers. With the exception of the

nodes in the input layer, each node in a MLP uses an activation function to map the sum

of its inputs to its output. In my experiments, I use two common activation functions, The

rectifier linear unit (ReLu), given in Equation 4.4 and SoftMax, given in Equation 4.5.

f(x) =

 0 x ≤ 0

x x > 0
(4.4)
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s(xi) =
exi∑n
j=1 e

xj
(4.5)

Random Forest

The Random Forest algorithm is a supervised machine learning algorithm

that uses an ensemble of randomized decision trees. Decision trees were one of the

first classification algorithms, and have been successfully used in a wide variety of

classification problems. Individual decision trees can be very fast, both for training

and prediction, but can be highly sensitive to overfitting. The Random Forest classifier

attempts to mitigate this problem, by taking an ensemble of randomized decision trees,

the output can be averaged, reducing the variance.

In general, a higher number of trees in the forest increases the performance of the

classifier, but at the cost of slower prediction time. A Random Forest classifier is trained

by bagging, where each tree is trained on a random sample with replacement of the

original dataset. Figure 5 shows an visualization of a Random Forest classifier consisting

of three decision trees.
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FIGURE 5: The Random Forest algorithm [32].

Ensemble Classifiers

In some cases, a combination of individual classifiers can be more effective than

an individual classifier alone. An ensemble classifier, or multiclassifier system, combines

multiple classifiers and aggregates their output to produce a single prediction. An typical

analogy to a multiclassifier system is a panel of experts making a decision by majority

vote. Multiclassifier systems allow different classifiers to take different approaches to

classification in order to better classify data. In a multiclassifier system, the output of each

classifier is aggregated to produce a single prediction, either by a majority vote or other

aggregation method [33]. In Figure 6, an example ensemble classifier with 5 individual

classifiers is shown.
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FIGURE 6: An example ensemble classifier system with 5 individual classifiers [34].

An ideal ensemble classifier does not necessarily require that the individual

classifiers are completely error free, provided that each individual classifier makes

different kinds of errors. That is, the samples that are incorrectly classified by one

classifier have little overlap with the types of errors made by another classifier, and

therefore the errors produced by any one classifier can potentially be canceled out

by the correct classifications performed by other classifiers. A useful measure of the

performance of a multiclassifier system is the Jaccard Index, given in Equation 4.6

J(A,B) =
|A ∩B|
|A ∪B|

(4.6)

Given each set of samples that was classified incorrectly by each individual

classifier, we can measure the complimentarity of the classifiers relative to each other by

taking the intersection of the sets divided by the union of the sets. This produces a value

between 0 and 1, where 0 represents all classifiers making exactly the same mistakes and

1 represents no two classifiers making any of the same mistakes. Equation 4.6 is shown

for a multiclassifier system consisting of two classifiers; however, the Jaccard Index can

be generalized for any number of classifiers.
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Convolutional Neural Networks

In recent years, Convolutional Neural Networks (CNNs) have been introduced as

one of the most promising methods for image classification. Breakthroughs in computing

power, as well as the availability of large training datasets, have made possible more

complex neural networks which have in some cases reached levels of performance

comparable to humans. Additionally, CNNs act as both a feature extractor and a classifier,

eliminating the need for a separate feature extraction step. Typically, CNNs are comprised

of an input layer, followed by one or more convolutional and pooling layers, which

are then fed into a fully connected neural network. A convolutional layer operates by

passing a filter kernel over the image, multiplying the kernel matrix by the underlying

pixels at each step. Pooling layers reduce the dimensionality of the image by sub-

sampling. Typically, a pooling layer passes a filter across the image, with each step

taking a statistical measure such as the sum, average, or maximum. An example CNN

architecture with convolutional and pooling layers is shown in Figure 7. In general,

CNNs with multiple convolutional and neural networks are the most effective at image

recognition tasks.

FIGURE 7: An example CNN architecture showing convolutional and pooling layers
[35].
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Convolutional Neural Networks (CNNs) have shown promising results in medical

image classification, and promising results have been achieved using CNNs to detect TB

in CXR images [36]. However, CNNs typically require a very large amount of training

data, and so are limited in their application on small datasets. Additionally, because

CNNs combine feature extraction and classification, the training time and computational

requirements of CNNs are frequently much higher [17]. Some success with smaller

datasets have been reported using transfer learning; however, this method has not so far

surpassed the accuracy of explicit feature-extraction based methods for TB detection [15].

Other Classifier Models

In addition to the classifier models described in this chapter, I performed

experiments with Support Vector Machines, Stochastic Gradient Descent classifiers,

Naive Bayes classifiers, and K-Nearest Neighbor classifiers. However, as the performance

of these classifiers was poor, I will not describe their operation here.
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U-SelfTrained, which uses unsupervised learning to re-assign uncertain labels, and U-

Multiclass, where uncertain labels are treated as their own class.

To analyze the dataset, the authors trained a Convolutional Neural Network

classifier using the DenseNet121 architecture, and achieved a best AUC of 0.97 on Pleural

Effusion and a worst AUC of 0.85 on Atelectasis. While the large size of the dataset

provides a significant advantage for classifier training, particularly for deep learning

applications, the lack of segmentation available for this dataset reduces its usefulness for

the detection of Tuberculosis, as a tuberculosis infection may alter the apparent shape

of the lungs on a CXR image. Additionally, because of the large number of samples

in the dataset, the resolution of the images is low, with an average size of 325 by 371

pixels. The dataset also suffers from low variation, with 70% of the images representing

only 31% of patients. Additionally, because the observations are automatically extracted

from radiology reports, the dataset does not make a distinction between active and latent

observations. For example, in the ”Fracture” class, no distinction is made between a

patient with a current bone fracture and one with a fully healed fracture. Finally, there

is some uncertainty in the ”No Finding” observation, as this simply represents that no

observation was found in the radiology report. For these reasons, I consider the CheXpert

dataset to be less applicable to the development of a CAD system for TB detection than

the Shenzhen or Montgomery datasets.

FIGURE 16: A selection of unprocessed images from the CheXpert dataset.
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