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ABSTRACT 

 
LIDAR ASSESSMENT OF SEDIMENT TRANSPORT RELATED TO THE 

REMOVAL OF THE MARMOT DAM, SANDY RIVER, OREGON 

by 
 

Carl Daniel Matzek 
 

January 2013 

 
  

Four Aerial LiDAR survey were used to examine the impacts of the 2007 

removal of the Marmot Dam on the Sandy River, Oregon. Geomorphic Change 

Detection software was used to answer three project goals: 1) to investigate how 

the dam removal affected sediment distribution in the lower reach of the river, 

several km downstream of the dam, 2) to determine whether the pulse of 

sediment from the dam removal created a detectable, successive downstream 

accumulation of sediment through time, and 3) to assess the effect of natural 

high-flow events on the sediment distribution related to the dam removal. The 

results showed that a sediment pulse could be identified and tracked up to 13 km 

downstream from the former dam, but below that the pulse could not be detected 

from normal river processes.  A majority of the sediment deposited from the 

dam release moved downstream as a result of high-flow events during winter 

months.
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CHAPTER I 

INTRODUCTION 

In the contiguous United States there are roughly 2.5 million dams, most of them 

major rivers (National Research Council, 1992; The Heiz Center, 2002), and 80% of 

them will be reaching their 50-year life expectancy in the coming decade (FEMA and 

USACE, 1996). Recent studies of dams have documented their negative impact on 

riverine systems such as starving downstream habitats of new sediment, and producing 

unnatural water temperatures and flows that can be detrimental to aquatic life (Williams 

and Wolman, 1984; Hunt, 1988; Graf, 1999, 2005, 2006; Schmidt and Wilcock, 2008; 

Walter and Merritts, 2008). Because few large dams have been removed to date, little is 

known about the effects to the river during and after a dam removal (Burroughs et al., 

2009; Major et al., 2011). The major concern with large dam removals is the release of 

the impounded sediment, which can reach 101-106 m3 (Heinz Center, 2002; Major et al., 

2011).  

The response of a river to a dam removal is commonly site-specific (Doyle et al. 

2003), but there are some similarities. Impounded unconsolidated sand and finer 

sediment tends to undergo vertical erosion until the original bed surface is reached, at 

which point channel widening dominates (Burroughs et al. 2009; Doyle et al. 2003; 

Downs et al. 2009; Rumschlag and Peck 2007; Wildman et al. 2007).  This process is 

similar to the evolution of the impounded sediment behind the former Marmot Dam on 

the Sandy River, Oregon (Major et al. 2011).  Deposition of the released sand to gravel 
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sized bedload sediment generally occurs within a few km from the dam (Burroughs et al. 

2009, Doyle et al. 2003, Downs et al. 2009, Rumschlag and Peck 2007). 

In October 2007 the Marmot Dam on the Sandy River, Oregon (Figure 1) was  

removed releasing 438,000 m3 of the estimated 750,000 m3 of impounded sediment into 

the river reach downstream of the dam (Major et al. 2011). Prior to and after the removal 

of this dam, a collaborative effort among multiple government and private agencies 

allowed for an unprecedented collection of data, including repeat total-station surveys of 

 

Figure 1: Images of Marmot Dam before and after removal. A: Former Marmot Dam, 
photo taken in 2007 (photo courtesy of Portland General Electric). B: Site of the former 
Marmot Dam site in the foreground, looking upstream toward the emptied reservoir in the 
background (photo taken by Carl Matzek)	
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the channel geometry, suspended sediment and bedload transport during dam removal 

and the acquisition of five sets of high-resolution aerial LiDAR (Light Detection and 

Ranging) (O’Connor and Major, unpublished data, 2011). This variety of pre- and post-

removal monitoring efforts substantially increased our direct observations of the overall 

impacts a dam removal could have on a river system of this type. 

The current study used the repeated LiDAR surveys to quantify the depositional 

locations, volume and migration of the sediment by the dam removal, as well as to 

determine the general spatial and temporal patterns of sediment storage and erosion in the 

Sandy River, Oregon over this time period. Four sequential LiDAR data sets from 2007 - 

2011 were analyzed: 1 before the dam removal and three after. The 2006 LiDAR survey 

was not used in this study because the Digital Elevation Model (DEM) had an unknown 

vertical scale that could not be corrected in time for the completion of the analysis. The 

three main goals of this research project were: 1) to investigate how the dam removal 

affected sediment distribution in the lower reach of the river, several km downstream of 

the dam, 2) to determine whether the pulse of sediment from the dam removal created a 

detectable, successive downstream accumulation of sediment through time, and 3) to 

assess the effect of natural high-flow events on the sediment distribution related to the 

dam removal. Each set of LiDAR images brackets high-flow events, including natural 

floods as well as the removal of the dam. The largest flood occurred in 2011 and was the 

3rd largest peak discharge on record at 64,000 ft3/sec (1,736 m3/sec ), (Figure 2). The 

investigation focused on sites where deposition or erosion  
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Figure 2: Timeline showing the annual peak hydrograph for the duration of the study 
(October 2007-October 2011). Arrows show dates of each of the 4 LiDAR survey 
acquisitions in relation to the peak flows during the study period.  

 
typically occurs during high-flow conditions, such as reaches of decreasing slope, point 

bars and channel expansions. 

Study Area 

The Sandy River is a high-gradient river that heads on the western flank of Mt. 

Hood and flows into the Columbia River near Portland, Oregon (Figure 3), draining 

1,300 km2 (Major et al., 2011). A majority of the sand and gravel carried by the river 

originates near the base of Mt. Hood in Late Pleistocene to Holocene glacial deposits and 
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volcanoclastic deposits (Crandell, 1980; Cameron and Pringle, 1986; Pirot et al., 2008; 

Pierson et al., 2011). Marmot Dam was located 52 km upstream from the Columbia River  

 

Figure 3: Map of the study area on the Sandy River in northern Oregon and the locations 
of the reach divisions used in the LiDAR analysis. The colored rectangles are locations of 
the DEM of Difference (DoD) example maps for each reach used in this paper. 
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confluence and stood 15 meters tall by 50 meters wide (Major et al. 2011). Sediment had 

filled the structure to nearly 14 meters allowing roughly 1 meter of standing water behind 

the dam (Major et al. 2011). This containment structure diverted water to a nearby river 

channel for use in generation of electrical power. Constructed in 1989 by Portland 

General Electric, the dam was structurally sound but in 2004 the operating license 

expired. Faced with the high cost of maintenance and upgrading the fish passage, 

Portland General Electric decided to demolish the dam and restore the river to its natural 

state. After the removal of Marmot Dam, water within the basin flowed freely from the 

headwaters to the mouth of the river for the first time in over 100 years (Major et al. 

2011).



 

7  

CHAPTER II 

METHODS 

This project used high-resolution aerial LiDAR to study the effects of the removal 

of the Marmot Dam on the Sandy River. Even though there are countless LiDAR datasets 

in existence, using it exclusively for a comprehensive analysis of sediment transport in a 

river is still an emerging practice (Brasington et al. 2003; Notebaert et al. 2009; Wheaton 

et al. 2010). This investigation built on a method developed by Wheaton and others 

(Brasington et al. 2003; Notebaert et al. 2009; Wheaton et al. 2009; Wheaton et al. 2010; 

Milan et al. 2011) and applied it to a full-length river analysis.  The Geomorphic Change 

Detection software (Wheaton et al. 2010 ) was coupled with ArcGIS to quantify the 

sediment erosion and deposition shown on the LiDAR-derived DEM.   

LiDAR involves the projection, reflection and collection of many laser beams to 

measure distances between the laser and the target surface. It is becoming a commonly 

used method for collecting high-resolution geomorphic information. To document 

changes related to the Marmot Dam removal, Watershed Sciences, an aerial LiDAR 

company based in Corvallis, Oregon, was commissioned to acquire the LiDAR surveys 

from 2006 to 2011. The LiDAR flights took place within the last week of September and 

the first week of October when the river was at low flow levels and the greatest amount 

of land surface was exposed above the water level. Watershed Sciences did all the post-

processing of the point clouds and produced 1-meter DEMs for this project. 

The 52 km of river channel covered by the LiDAR surveys was separated into 6 

separate divisions for analysis: Reservoir, Below Dam, Gorge, Gorge to Bull Run, 
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Oxbow, and Dabney Park to Columbia River (Figure 3). Local changes were initially 

documented within each reach and then tied into the entire study area of the river. The 

divisions were based on locations where the longitudinal slope changed and variations in 

bedform characteristics were reported in Major et al. (2011). Polygon layers for the 

Sandy River floodplain were created with ESRI ArcGIS© software and extracted from 

the DEM to process only those areas affected by the river processes.  

Geomorphic Change Detection (GCD) software (v.5) was used to quantify the 

change in volume for each set of DEMs, and is a free add-on for ArcGIS 10 designed by 

Dr. Joe Wheaton, North Arrow Research, and ESSA Technologies. GCD is used to 

calculate the volume change between two different repeat topographic surveys to create a 

DEM of Difference (DoD) (Wheaton, 2010).  The program is primarily designed to help 

address the uncertainty found in all digital elevation models by identifying possible 

locations of error and propagating those errors through the differencing. Accounting for 

the uncertainty with a survey-specific error variable allows the user to determine whether 

low-magnitude change is real change versus noise in the signal; one way to do this is to 

build an error model for the survey or project.  

An error model was built for the dam reach and part of the reach below the gorge 

to better understand potential sediment transport or storage in the reaches closest to the 

former dam site. To apply the error model, each DEM was loaded into GCD as a multi-

method survey to allow a mask to be superimposed on the DEM with specific error 

values. The error mask was created in ArcGIS as a multi-category polygon layer in which 
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each category was assigned an error value related to the type of surface it was during the 

time of LiDAR acquisition (Figure 4). Three surface categories were used: 1) Bare land 

 

Figure 4: Example of the error model applied to a sediment bar. Each shaded polygon 
was assigned a specific vertical error uncertainty used for the error propagation model in 
GCD. Error values were based on project reports provided by Watershed Sciences. 

in both surveys, 2) Land-to-water or water-to-land transition between surveys, and 3) 

heavily-vegetated surfaces. For each of the three categories an error value was assigned 

to each survey dataset based on reported bare surface and vegetated errors given in each 

of the final project reports (Watershed Sciences 2007, 2008, 2010, 2011). Each of the 

three error categories were merged into one error mask and applied to its respective 

DEM, which were then differenced.  
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DEM of difference (DoD) maps were created for all six river sections (Figure 3) 

using DEM pairings of the years 2008-2007, 2010-2008, and 2011-2010 to cover the 

entire study period. Each time step was differenced to track any possible progressive 

downstream changes that could be related to the dam removal. DoD maps were also 

created from the 2011-2008 and 2011-2007 pairs.  The 2011-2008 DoD compares the 

surface elevations for the entire post-dam removal period, from one year after the dam 

removal to the last LiDAR survey and the 2011-2007 DoD pair spans the entire study 

period, from before the dam removal to most recent survey.  

During the acquisition of the LiDAR in 2007 and 2010 the river discharge was 

higher than 2008 and 2011 producing a higher water surface (Table 1). The higher  

Table 1: Discharge and Stage Data 

 
 
 
Year 

 
Discharge 

(ft) 
Discharge 

(m) 

Stage 
Height 

(m) 

Stage 
Height 

Difference 
(m) 

2007 832 23.6 2.57 0.15 
2008 488 13.8 2.42  
2010 523 14.8 2.46 0.04 

2011 484 13.7 2.44 0.02 
 
Table 1. Discharge and Stage data from gaging station 14142500 on the Sandy River at 
the confluence of the Bull Run River. The stage height differences are all normalized to 
the water-surface elevation in 2008. This normalization was done to reduce the influence 
of the different water-surface elevations on the calculations of the volume of sediment 
erosion and deposition based on changes in surface elevations. 
 
discharge and water-surface elevation during the 2007 and 2010 LiDAR surveys falsely 

exaggerated the calculated amounts of erosion and deposition within the channel. The 

ability to address the variation in stage and discharge of the water in the multiple surveys 

was a major concern in determining the accuracy of the DoD volume estimates. To lessen 
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the effect of the added water height, the two higher stages (2007 and 2010) were 

normalized to the similar 2008 levels.  

The stage and discharge readings from the USGS gauging station 14142500 at the 

confluence of the Bull Run River located at the boundary of the Gorge to Bull Run Reach 

and the Oxbow Reach (Figure 3) at the time of LiDAR acquisition were used to 

determine the difference in water-surface elevations among the years. The length of each 

reach and average width of the wetted channel were multiplied to calculate the surface 

area of the water, and the difference in the heights of the discharges of the pair was 

multiplied to get a volume of water. The calculated volume was then either subtracted or 

added to the erosion or deposition value depending on the DoD pairing. For the 2010-

2008 pairing the higher stage in 2010 (Table 1) produces a greater deposition than 

actually happened; the deposition value was normalized. The discharge for 2008 and 

2011 were within 4 cfs (0.11 m3/sec) of each other should not support a 2 cm rise in the 

water surface (Table 1) but were normalized to keep everything standard. 

The calculated changes in sediment volume based on the LiDAR with the 

normalized water-surface stage for the dam reach were compared with the sediment 

volumes calculated from total-station surveys by Major and others (2011) for the same 

reach and time period. The calculated sediment volumes using the two methods were 

within ~5% percent of each other, lending confidence to the application of the stage-

normalization method to the DoD calculations for the downstream reaches with similar 

channel characteristics and flow dynamics.  
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The LiDAR reflects off the river-water surface and does not reveal the 

subaqueous channel bathymetry. To determine whether the water surface was the major 

determining factor for a positive or negative net change in sediment volume, a second set 

of DoD calculations for the Below Dam Reach and the upstream 2 km of the Below 

Gorge reach were created using only the subaerially exposed sediment bars and river 

banks that were above the water surface when the LiDAR was acquired. The surfaces 

used included all possible areas affected by high-flow events.  The above water surface 

DoDs were also created to closely monitor the growth and development of sediment bars 

and to produce accurate estimates of the volume of sediment storage and transport 

through these two reaches. Polygon layers were created for each survey pair (2008-2007) 

and then were extracted from the full-channel DEMs already created. These subaerial 

polygons were only created for the Below Dam Reach and the first 2 km downstream 

from the gorge in the Gorge to Bull Run Reach (Figure 3). The subaerial DoDs for these 

two reaches matched the patterns of net deposition or erosion produced by the full-

channel calculations, but with a slightly smaller volume of change because the river bed 

was excluded. The normalized net volume estimates might still be exaggerated slightly 

by the water surface, but this method serves as a first-order adjustment to more accurately 

estimate the volume of change. The results for the dam reach were then compared with 

total-station ground surveys and sediment budgets completed between 2007 and 2009 

(Major et al. 2011, Podalak 2011) to calibrate and evaluate the effectiveness of the GCD 

program and error models.
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CHAPTER III 

RESULTS 

The previously mentioned normalized volume calculations will be used 

throughout the remainder of the thesis unless a normalized value was not applicable.  

Refer to Table 2 for all calculated values both, raw and normalized.  High resolution DoD 

images for the entire Sandy River study area can be found in the Appendix. 

Reach I: The Reservoir 

Initial erosion within the reservoir reach occurred during the breaching of the dam 

in October 2007. Results of a total station survey concluded that, during the initial dam 

breach, an estimated 125,000 m3 was eroded in 60 hours as the river carved into the 

impounded sediment, widening to the full reservoir width and migrating upstream ½ km 

from the dam (Major et al. 2011). During the next 12 months, the knick point migrated 

upstream 2 km (Figure 5) and eroded farther into the sediment bringing the total to nearly 

474,000 m3 (Table 2). The next span of time (2010-2008) bracketed two high flow events 

(Figure 2). The DoD for this period shows a net sediment gain of ~32,000 m3, with 

erosion occurring as well (Table 2). This calculation does not coincide with the net loss 

of 43,000 m3 presented in Major et al. (2011). The final time interval (2011-2010) 

bracketed a large the large flow in 2011 (Figure 2). The entire reservoir experienced a net 

erosion of 285,000 m3 during this 1-year period. Near the dam site, the main channel 

occupied a new location along the eastern bank of the bedrock-confined valley; previous 

channels had occupied the center of the valley with only secondary branches reaching the 

eastern wall (Figure 5). 
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Table 2: DoD Summary For All Reaches Of Study Area 
* Values in thousands of meters * 

 
Reach Number I II III IV V VI 

Reach Name Reservoir
Below 
Dam 

Gorge 
Gorge to 

Bull 
Run 

Oxbow 
Dabney 
Park to 

Columbia
2008-
2007 Erosion 491 24 117 96 607 374
  Normalized  474 16 94 45 461 282
 Deposition 54 126 51 94 219 199
  Net -420 110 -43 49 -242 -83
    
2010-
2008 Erosion 159 27 43 109 473 202
  Deposition 196 168 397 465 1,092 677
  Normalized 191 166 391 451 1,053 653
  Net 32 139 348 342 580 451
    
2011-
2010 Erosion 367 176 389 453 1,156 661
 Normalized 362 173 383 439 1,117 637
  Deposition 76 27 52 111 474 285
  Net -286 -146 -331 -328 -643 -352
    
2011-
2008  Erosion 329 56 74 185 826 404
 Deposition 76 49 91 199 762 544
  Normalized 74 48 88 192 742 531
  Net -255 -8 14 7 -84 127
    
2011-
2007  Erosion 756 19 34 197 1,054 520
  Normalized 755 18 31 190 1,035 508
 Deposition 68 112 129 208 602 485
  Net -687 94 98 18 -433 -23

  
Note. DoD summary for all reaches of the Sandy River and all the DoD year pairings. 
Net losses are highlighted in red and net gains are in blue. Shaded rows are normalized to 
the 2008 and 2011 discharge and height of the water level.  
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Figure 5: DoD maps for the former reservoir reach located behind the former Marmot 
Dam showing the change in vertical elevation of the ground surface between LiDAR 
surveys. Some of the apparent change within the channel is due to higher water levels in 
2007 and 2010; values were resolved in data table 2. 
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The cumulative post-dam-removal DoD from 2011-2008 and the DoD from the entire 

study period of 2011-2007 both show a net loss of sediment from the reservoir: 253,000 

m3 and 690,000 m3 respectively through the end of the study period.  

Reach II: Below the Dam 

The 2 km reach directly below the Marmot dam extends to the head of the 

bedrock gorge and was the primary site for sediment deposition related to the dam 

removal. Within the first year after dam removal (2008-2007), the LiDAR showed a 

deposition of 110,000 m3 of sediment. The sediment deposition created a large sediment 

wedge 4 meters high at the dam site that pinches out roughly 1.5 km downstream (Major 

et al. 2011). In this reach most of the valley floor was raised from the outwash of 

sediment from the dam (Figure 6). Multiple large sediment bars were created 

immediately downstream of the dam during the breach and remained above the water 

surface during the subsequent LiDAR surveys (Figure 6). Sediment deposition covered 

the upper surfaces and sides of several existing bars farther downstream toward the 

entrance to the gorge. In the 2010-2008 DoD the reach experienced a net gain of 

~140,000 m3 (Table 2), with deposition occurring mainly on bars farther downstream and 

in the channel bottom. The sediment bar on the upper end of the sediment wedge had 

started to erode but still remained above the low-flow water surface. In the 2011-2010 

DoD there was deposition on bars throughout the 2 km reach, but overall a net loss of 

147,000 m3 occurred. Based on the DoD volume calculations there was a net gain of 

102,000 m3 of sediment that still remained in the reach at the end of the study period, 

four years after the dam was removed (Table 2). 
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Using the categorized error model described earlier in the methods (Figure 4), the 

banks and sediment bars were analyzed without the water surface to quantify the amount 

of sediment deposited above the low-flow water surface (Figure 7) and compare the 

volumes and patterns of sediment erosion and deposition with the results from the full 

channel DoD (Figure 6). The sediment bar and full channel DoDs showed the same 

pattern of net gain or net loss for each year pairing, but the volumes were different (Table 

2 and 3). The sediment bar DoD spanning the dam removal (2008-2007) only recorded a 

net gain of 55,000 m3 (Table 2) compared to the 110,000 m3 (Table 3) calculated with the 

full channel DoD and 105,000 m3 by Major and others (2011). In the following years, the 

volume estimates for the sediment bars DoD (Figure 7) were much lower, only 

accounting for ~20,000 m3 of deposition and erosion (Table 3).  

Reach III: The Gorge Reach 

The 8 km long bedrock gorge was thought to have experienced little deposition 

from the dam breach (Major et al. 2011) due to the higher flow velocity and virtually no 

river banks on which sediment could accumulate, but no field evidence could be collected 

to support the idea.  During the dam breach, very little difference in suspended sediment 

was measured upstream and downstream of the gorge (Major et al. 2011). The 

cumulative post-dam period, 2008-2011, shows a net gain of 14,000 m3 of sediment.  
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Figure 6: DoD maps for the 2 km Below Dam reach directly below the former Marmot 
Dam showing the change in vertical elevation of the ground surface between LiDAR 
surveys. Large volumes of deposition from the dam removal are visible within the reach. 
Some of the apparent change within the channel is due to higher water levels in 2007 and 
2010; values were resolved in Table 2. 
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Figure 7:  DoD maps for the sediment bars within the 2 km Below Dam Reach. The water 
surface was removed and the remaining surfaces were differenced to examine how much 
of the change occurred above the water surface, and to determine how much the water 
surface influenced the volume estimates. 
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Table 3: DoD Summary for Sediment Bars Only 
* Values in thousands of meters * 

Below Dam Bars     

DEM Pair 
2008-
2007 2010-2008 2011-2010

2011-
2008 

2011-
2007 

Erosion 3 ±1 9 ±3 31 ±6 20 ±5 6 ±2
Depostion 58 ±26 30 ±7 6 ±1 20 ±4 73 ±29
Net 55 ±24 21 ±5 -25 ±5 0 ±1 67 ±27
        
End of Gorge Bars         

DEM Pair 
2008-
2007 2010-2008 2011-2010

2011-
2008 

2011-
2007 

Erosion 2 ±1 3 ±1 7 ±1 5 ±1 6 ±2
Depostion 2 ±1 10 ±2 8 ±1 8 ±2 14 ±6
Net 0 ±1 7 ±2 1 ±1 3 ±1 8 ±3

  
 
Note. DoD summary of sediment bars and banks within the Below Dam Reach and the 
Gorge to Bull Run Reach using the categorized error model. These surfaces were above 
the water level during each LiDAR survey. 
 
Based on inspection of the DoD and aerial photographs most of the deposition appears to 

be located near large boulders and sharp bends in the channel.  According to the DoD 

calculations where a high water surface was included (2008-2007, 2010-2008, 2011-

2010) a majority of the change occurred only in the channel and might be a result of the 

channel geometry combined with higher flow, not actual deposition or erosion. 
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Figure 8: DoD maps of the full channel for a portion of the Gorge Reach showing the 
deposition and erosion within the Gorge. Some of the apparent change within the channel 
is due to higher water level in 2007 and 2010; values were resolved in data Table 2. 
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Reach IV: Gorge to Bull Run River 

Below the Gorge to the confluence of the Bull Run River is a 9.5-km alluvial 

reach that was considered a possible location for sediment deposition from the dam 

removal (Major et al. 2011).  During the 2008-2007 period spanning the dam removal, 

there was no major change apparent in the DoD (Figure 9; Table 2). The DoD for 2010-

2008 showed a net increase of 355,000 m3 in sediment volume (Table 2), some of which 

might be due to the higher water surface in 2010. A visibly significant amount of 

sediment was deposited on the tops and banks of the initial sediment bars downstream 

from the gorge, in some cases creating completely new sediment bars (Figure 9). Further 

downstream, there was minor deposition on a few bars and along the insides of meander 

bends with accompanied erosion on the outer bank of the bends and along some sediment 

bars (Appendix IV). During the 2011-2010 DoD, there was an overall loss of sediment to 

the reach, but some bars experienced substantial deposition on the downstream ends. 

Most notably, the bars immediately downstream of the gorge showed continued 

deposition and some grew together to form a single large bar. The post-dam period 

(2011-2008) had fairly balanced erosion and deposition throughout the reach, but 

ultimately, had a net deposition of 14,000 m3. The entire study period (2011-2007) 

showed a net gain of 11,000 m3, with most of the deposition occurring on a few major 

bars, including those at the mouth of the gorge (Figure 9).  
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Figure 9: DoD maps of the full channel for the first 2 km of the Gorge to Bull Run Reach 
showing the deposition on sediment bars near the mouth of the gorge that is evidence for 
a sediment pulse coming from the former Marmot Dam removal. Some of the apparent 
change within the channel is due to higher water level in 2007 and 2010; values were 
resolved in data Table 2. 
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In this reach, the subaerially exposed bars and banks in the 2 km sub-reach 

immediately downstream of the gorge where the most change occurred were analyzed 

separately using the categorized error model explained in the methods (Figure 4). 

Between 2007 and 2008, these areas had a negligible net loss of 179 m3, but during the 

next few years sediment started to enter the reach (Figure 10). The 2008-2010 DoD 

showed a deposition of 10,300 m3 (Table 3), but due to some erosion, had a net gain of 

7,500 m3 (Figure 10). Over the next set of years (2010-2011), another 8,200 m3 was 

deposited on the bars but the effects of the large flood in 2011 also eroded some 

previously deposited sediment resulting in a net gain of 1,300 m3 (Figure 10).  The result 

was a gross gain of ~18,500 m3 since 2008 and a net gain of 8,880 m3 (Table 3). 

Reach V: Oxbow 

The 19-km Oxbow Reach starts at the confluence of the Bull Run River and ends 

just upstream of Dabney Park (Figure 3). The reach shown in Figure 11 is a 

representative sample of what occurred within the entire Oxbow Reach and is located 

roughly 17 km downstream from the start of the reach (Figure 3). From 2007-2008, this 

reach experienced a net loss of 242,000 m3 of sediment (Table 2), but only a few bars 

changed by a noticeable amount (Figure 11). There was some bank erosion in a straight 

section (Figure 11) with some deposition occurring on downstream ends of bars. In the 

2010-2008 DoD, there was an overwhelming depositional signal, most of the deposition 

was coming from the channel, but there were many bars and banks that were covered in 

new sediment. Bank erosion was prevalent in the sharp bends followed by high amounts 

of deposition downstream or on opposite sides of the channel (Figure 11).  
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Figure 10: DoD maps for the first 2 km of the Gorge to Bull Run Reach with the water 
surface removed to more easily show the sediment deposition on the bars immediately 
downstream from the gorge that is attributed to the sediment pulse from the Marmot Dam 
removal. 
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Figure 11: DoD maps for a 2.5 km section of the Oxbow Reach. The DoD depicts erosion 
and deposition throughout the reach during the study period, with no discernible 
downstream migration of a pulse of sediment following the Marmot Dam removal. Some 
of the apparent change within the channel is due to higher water levels in 2007 and 2010; 
values were resolved in Table 2. 
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Following the high-flow event in January of 2011 the 2011-2010 DoD has a strong 

erosional signal with a net loss of 643,000 m3 (Table 2). There was considerable cut bank 

erosion on most bends in the reach, most notably in the straight section shown in Figure 

11. The locations of erosion and deposition are most clearly illustrated on the two 

cumulative DoDs (2011-2008 and 2011-2007). The entire channel has migrated a full 

channel width in the meander near the downstream end of the reach (Figure 11) during 

the study period. There is no discernible, systematic downstream migration of a sediment 

pulse through this reach following the dam removal. 

Reach VI: Dabney Park to the Columbia River 

The remaining 10 km of the Sandy River from Dabney Park to the Columbia 

River is the lowest-gradient reach of the study area (Figure 3) and the only reach with a 

predominantly sand-bed channel. The DoD spanning the time of the dam removal (2008-

2007) showed a net loss of sediment, the majority of which occurred on a few cut banks 

and some in the delta before the Columbia River (Figure 12). Scattered erosion and 

deposition also occurred on some of the major bars. In the subsequent 2010-2008 DoD, 

most of the sediment bars experienced deposition, while erosion was common along both 

the inner and outer banks at river bends (Figure 12). During 2011-2010, deposition 

continued on most of the sediment bars, even though the DoD showed an overall net loss. 

The cumulative post-dam DoDs (2011-2008) indicate a net gain of sediment after 

normalizing for the water-surface elevation (Table 2) but the cumulative study period 

shows a net loss of sediment (Table 2).  

 



  28 

  

 

Figure 12: DoD maps for a 2-km section of the Dabney Park to Columbia River reach, 
the final reach of the Sandy River before it enters the Columbia River. In this reach there 
was consistent deposition during the study period (2007-2011), but no observed pulse of 
sediment moving through the reach. Some of the apparent change within the channel is 
due to higher water levels in 2007 and 2010; values were resolved in Table 2. 
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Cumulative deposition over the study period occurred on a majority of the large sediment 

bars and along some sections of the river bank. 

Summary of Results 

The gross erosion, deposition and net change during each DoD pairing is 

graphically represented in Figures 12 and 13 using the normalized sediment volumes 

(Table 2) where applicable. The bar graph can be used to compare the mean vertical 

change among the channel reaches. For example, the sediment deposition in the Below 

Dam Reach II was roughly 30% that in the Oxbow Reach V (Table 2), but when these 

volumes were spread over the length of the reach, the vertical change was much greater 

in the shorter Below Dam Reach II (Figures 12 & 13). 

 

Figure 13: Gross deposition, erosion and net change of each DEM pair during 
incremental time periods for the Sandy River from the former Marmot Dam Reservoir to 
the Columbia River.  The volumes of sediment from Table 2 (normalized where 
applicable) were divided by the length and average width of the channel in each reach to 
show the average vertical change in each section. Reach Labels: I. Reservoir, II. Below 
Dam, III. Gorge, IV. Gorge to Bull Run, V. Oxbow, VI. Dabney Park to Columbia River. 
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Figure 14: Cumulative gross deposition, erosion and net change for the total post-dam 
period (2008-2011) and the entire study period (2007-2011) for the Sandy River from the 
former Marmot Dam Reservoir to the Columbia River.  The volumes of sediment from 
Table 2 (normalized where applicable) were divided by the length and average width of 
the channel in each reach to show the average vertical change in each section Reach 
Labels: I. Reservoir, II. Below Dam, III. Gorge, IV. Gorge to Bull Run, V. Oxbow, VI. 
Dabney Park to Columbia River. 

	

 



 

31 

CHAPTER IV 

DISCUSSION 

 

 Reach I:  The Reservoir Reach 

Incision of the reservoir progressed rapidly after the breach of the coffer-dam: 

within 60 hours over 125,000 m3 of sediment was removed, within 2 months 40% of the 

sediment in the reservoir was evacuated, and after 2 years nearly 60% of the total 

reservoir (425,000 m3 ) was eroded (Major et al. 2011). Since 2009, two particularly high 

discharge events occurred during December and January in 2010 and 2011, resulting in 

more erosion within the former reservoir. The channel continued to widen and incise 

throughout the entire 3 km reach from 2007 to 2011, which is apparent by the lowering of 

the channel itself (Figure 5).  

The DoD pair of 2010-2008 produced a net gain of sediment, even though the 

downstream half of the reservoir experienced predominantly erosion. The deposition 

occurred on some bars in the upstream portion and two near the end of the reach. The 

apparent net gain could have occurred when the channel migrated eastward within the 

bedrock-confined valley, resulting in a large volume of sediment deposited within the 

former channel after the reservoir pool drained.  

The only incremental time period that showed a net increase in elevation and 

sediment volume in the Reservoir Reach was 2008-2010. The rise in surface elevations 

over this period was probably partly due to the higher discharge and water-surface 

elevation during the 2010 LiDAR survey (Table 1). The apparent depositional volume 
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produced by an average 4-cm stage increase (Table 1) across the water surface was 

subtracted from the 2010-2008 sediment-volume change, but this normalization might 

not have accounted for the entire effect of the higher water stage. Based on field 

observations and LiDAR assessment there still appears to be remaining sediment from 

the former dam within the channel that could be mobilized. The large flood in January of 

2011 (64,000 cfs, 1,736 m3/sec, Figure 2) was the most erosive period within the 

reservoir since the initial draining of the reservoir. During the high flow event between 

the 2010 and 2011 LiDAR surveys the channel incised 1 to > 2.5 meters into the existing 

channel bottom throughout the entire 3 km reach. Even taking into account the minimum 

2 cm height difference of the water surface between the two surveys there was 

considerable incision during the 2011 flood event.  

Reach II: Below Dam Reach 

The 2 km reach directly below the former Marmot Dam to the entrance of the 

bedrock gorge was the primary site for a majority of the sediment deposition related to 

the removal of the dam. Half of the estimated 65,000 m3 of sediment eroded within the 

first 60 hours was deposited within the first 1.5 km downstream of the former dam 

(Major et al. 2011). The valley bottom was raised 4 meters near the dam and tapered off 2 

km downstream (Major et al. 2011). Over the next few months the reservoir continued to 

release sediment, and one year after the dam breach 105,000 m3 was deposited within the 

2 km reach (Major et al. 2011). Most of the deposition occurred within the first kilometer 

below the dam (Figure 6). Most of the deposition occurred within the channel itself, with 
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very little on the banks of the river. This pattern is probably a result of very steep valley 

walls and narrow floodplain.  

High-flow events in the winter months of 2008 and 2009 deposited more sediment 

into the reach, mainly within the first ½ km downstream of the former dam (Major et al. 

2011). However, in the 2010-2008 DoD there was erosion within the first ½ km on the 

bars within the channel and may have happened between field observations by Major and 

others in 2009 and the LiDAR survey in October of 2010.  During these storm events the 

flow was high enough to overtop the sediment bars, depositing new sediment on the top 

of the bars and eroding along some banks (Figure 6). The large storm event in January of 

2011 (Figure 2) removed an estimated 173,000m3 of sediment from the reach (Table 2). 

Most of the erosion occurred within the channel; only up to a few decimeters of sediment 

were eroded from the bars that were visible above the water surface during the 2010 and 

2011 surveys (Figure 6). The 2011-2008 cumulative DoD (Figure 6) indicates a net 

decrease of only ~7,000 m3 during the 3-year period after the dam was removed (Table 

2), although the sediment flux into and out of this reach was significantly greater during 

individual incremental time periods. This calculation is reliable because the discharges 

during both LiDAR surveys were nearly identical, thus any vertical change in the water 

surface could be considered a removal or addition of sediment. According to the 2011-

2007 DoD (Figure 6) a net gain of 101,600 m3 occurred since pre-dam-removal 

conditions (Figure 14). 

Within the 2-km Below Dam Reach, approximately half of the initial 110,000 m3 

net gain within the first year after the dam removal was recorded by the sediment bars 
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exposed above the water surface in the 2008-2007 DoD (Figures 6 and 7). The sediment 

bars near the dam site covered ~60% of the surface area of the sediment wedge described 

by Major et al. (2011). Preexisting bars >1.5km from the dam had minimal amounts of 

deposition during the first year, which might have been a result of the discharge at the 

time of the dam breach being insufficient to overtop the bars and deposit sediment.  

The evolution of the sediment wedge is most apparent during the last three 

LiDAR surveys. Sediment bars in the upstream end of the reach eroded laterally and 

elongated downstream, while deposition on the downstream bars in this reach increased.  

By 2010 erosion had begun on the upstream end of the reach; it continued in 2011 and 

progressed downstream (Figures 6 & 7). Field work by Major and others (unpublished 

data, 2011) suggests that a majority of the coarse sediment stayed within the 2-km dam 

reach, which is consistent with other research indicating that coarse sediment released 

from a dam removal decreases dramatically downstream from the dam (Kibler et al., 

2011).  

One of the main objectives of this study was to determine whether a sediment 

pulse related to the Marmot Dam removal could be documented as it moves through the 

river system. A pulse of sediment can either progress downstream via dispersion or 

translation, or some combination of the two (Lisle et al. 2001, Sklar et al. 2009), but 

dispersion is the dominant mode of transporting a sediment pulse even when combined 

with translation (Lisle et al. 1997; Cui et al. 2003; Lisle, 2008). With dispersion, the mass 

of sediment is gradually removed and spread downstream, whereas translation refers to 

the propagation of the entire mass of sediment (Sklar et al., 2009). Considering that 90% 
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of the original volume of the sediment wedge deposited during the dam removal is still 

located in the same place, the pulse must be moving through dispersion. A sustained flow 

regime up to 2.5 times greater than the discharge required for sediment entrainment is 

considered the most favorable condition to move a large mass of sediment via dispersion 

(Humphries et al. 2012). During the spring snowmelt season and winter rains between 

October 2007 and spring of 2008, the Sandy River was able to reach these conditions for 

brief windows of time allowing for dispersion of the sediment downstream. Much larger 

flows are required for the complete translation of a sediment pulse (Humphries et al. 

2012). A few such flows occurred during the study period, such as the flood in January, 

2011 with a peak discharge of 64,000 cfs (1,736 m3/sec) (Figure 2). After this large flood, 

the sediment wedge downstream from the dam was still in place and had only been 

reshaped slightly (Figures 6 & 7). This observation supports the interpretation that a 

majority of the boulder and gravel-sized sediment deposited within the 2-km dam reach 

has stabilized and could potentially remain for years to come. The sand-sized sediment 

released from the dam, however, is readily mobilized during high flows and is 

continually being dispersed downstream into the gorge and beyond. 

 

Reach III: The Gorge 

The 13-km gorge on the Sandy River is bedrock-confined with virtually no 

floodplain.  The stream gradient is much steeper than in the other 5 study reaches. Given 

the channel geometry and the steep profile, the flow hydraulics within the gorge are not 

directly comparable to the rest of the study area. The procedure employed to normalize 
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the volume calculations was applied to this reach, but based on the channel geometry and 

flow conditions the correction for the water surface may not be enough to accurately 

account for the entire volume generated by the higher water surface. The 2010-2008 and 

2011-2010 DoD shows a large volume of deposition followed by erosion.  The channel 

geometry in the Gorge is narrower than the other channels and would create an even 

higher water height during increased flow discharge compared to the other channels.  

This even higher increase in stage would produce the high volumes seen in 2010-2008 

and 2011-2010 (Table 2).  The discharge in 2007 was higher than 2010 (Table 1) and 

should have produced higher volumes within the Gorge but for some reason didn’t (Table 

2).  This discrepancy may suggest that a large volume of sediment was deposited in the 

gorge between 2008 and 2010.  However, the net accumulation of sediment in the Gorge 

for the entire study period (2007-2011) as well as the cumulative post-removal period 

(2008-2011) is consistent with the cumulative patterns for the adjacent reaches (Table 2; 

Figure 4) 

Reach IV: Gorge to Bull Run 

Within the first 0.5 km downstream from the bedrock gorge, near Revenue Street 

Bridge (Figure 3), the Sandy River enters a low-gradient, gravel-bed channel where 

deposition occurred after the dam removal. The 2008-2007 DoD of the Below Gorge 

Reach showed minimal signs of change within the first 2 km of this reach, but the 

following 2010-2008 and 2011-2010 periods recorded sediment coming into the reach 

from the gorge. The 2010-2008 DoD showed an appearance of sediment on the bars and 

banks immediately downstream of the gorge.  
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To better understand the volume of sediment coming into the system, the 

subearial river banks and sediment bars in the first 2 km of the Below Gorge reach were 

analyzed separately without the water surface within the channel (Figure 10). The 

appearance of sand after the 2011 flood can be readily detected in a comparison of 

Google Earth images from 2010 and 2011, as previous low-growing vegetation was 

either completely removed or covered by sand in the later image (Figure 15). The inflow 

of sediment into the reach below the gorge is most likely sourced from the upstream 

reaches like the Gorge or the Below Dam Reach.  

A fair amount of erosion occurred within the Below Dam Reach during 2008-

2010, and this sediment probably passed through the gorge and was deposited on the first 

bars downstream, at the upstream end of the Gorge to Bull Run Reach (Table 2; Figures 8 

and 9). The absence of new sediment in the 2008-2007 DoD followed by deposition after 

the 2008 LiDAR survey is interpreted as a sediment pulse related to the removal of the 

dam and propagating downstream over the course of 2 years. Downstream of the first 2 

km in this reach, the sediment pulse could not be distinguished from sediment that was 

reworked by normal river processes. The influx from the dam removal might have 

extended farther downstream, but it was overwhelmed by the background of natural 

sediment transport in the river. In the DoD images farther downstream within the Gorge 

to Bull Run Reach there is no sudden appearance of a large volume of sediment 

equivalent to that at the upstream end of the reach. Repeat ground surveys between 2008 

and 2009 (Bauer,2009; Podolak, 2011) were unable to detect any change in the river 

channel related to the dam removal downstream of Revenue Bridge (Figure 3). The lack 
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of evidence during the ground survey suggests that the sediment pulse entered the reach 

during the high flows during the winter of 2010, nearly 3 years after the removal of the 

Marmot Dam. 

 

 

Figure 15: Google Earth images of the first sediment bar downstream from mouth of the 
gorge. Top image is from 2010 before a large flood and bottom image is from 2011 after 
the large flood. 
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Remaining Reaches of the Sandy River 

The downstream reaches below Revenue Bridge to the Columbia River showed 

no detectable change related to the Marmot Dam removal; however, they were vigorously 

active with local erosion and deposition.  The 2008-2007 DoD time frame was the least 

active for the entire study period with only minor changes throughout the downstream 

reaches. Large volumes of sediment transport were recorded for these reaches, but 

considering the longer lengths of the reaches (9 - 20 km) compared to the 2-km Below 

Dam Reach, they were relatively low-magnitude changes ( < 0.5 meters vertical change ). 

The Oxbow reach was the most active reach throughout the entire study period, 2007-

2011, with continuous erosion and deposition in the meander bends and downstream of 

them, as shown in the representative 2-km example sub-reach (Figure 11). The 

downstream reaches all tended to follow the same net gain or loss of the upstream Below 

Dam and Gorge to Bull Run Reaches, but with larger volumes of sediment.   

The consistently large volume of erosion and deposition fairly evenly distributed 

throughout the downstream reaches during the study period (2007-2011) suggests that the 

dam removal in fact had little detectable impact >2.5 km downstream of the gorge (12 km 

from the former dam). Erosion occurred on upstream ends of bars and along cutbanks, 

and deposition occurred on the downstream ends of bars and pointbars, as would be 

expected. The pattern of erosion and deposition distributed longitudinally through the 

reach supports the interpretation that it represents reworking of sediment within the 

channel system, rather than the arrival of a discrete sediment pulse. Erosion and 
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deposition were present in the same DoDs, in contrast to the Gorge to Bull Run Reach 

where deposition occurred in the absence of erosion within the same reach. 

In summary, the effects of the Marmot Dam Removal were documented with the 

LiDAR analysis in both the Below Dam Reach and the Gorge to Bull Run Reach. The 

downstream-thinning, 2-km sediment wedge produced during the dam breach in the 

Below Dam Reach still remained 4 years after the removal of the Marmot Dam and is 

visually represented in Figure 13 and 14. A possible sediment pulse was detected 12 km 

downstream from the former dam in the Below Gorge Reach and was tracked to a point 

2.5 km below the mouth of the gorge. The observed patterns of erosion and deposition in 

the reaches of the Sandy River farther downstream were distributed throughout the 

channel and flood plain following the years of high flows on the Sandy River.  The 

Reservoir Reach experienced a net decrease in sediment over the entire study period 

spanning the dam removal (2007-2011), as expected.  The 3 reaches immediately 

downstream of the dam experience a net increase, which is likely due to the transfer of 

sediment from the reservoir into the initial portion of the river channel downstream.  The 

sediment pulse related to the Marmot Dam removal could not be directly traced through 

the furthest downstream reaches.  This is due to the overwhelming influence of the high 

flow events and their ability to cause natural processes of sediment redistribution within 

the river system. 
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Areas of Uncertainty in the Results 

The largest source of uncertainty within this project was normalizing for the high 

water surface.  A greater discharge most likely would not produce the exact same water 

column each year due to the bed surface of the channel constantly changing.  The volume 

of water was also calculated using the assumption of a constant channel width in each 

reach division along with a constant depth of water.  Using an excel spreadsheet I was 

able to determine how much the change in the height of the water surface affected the 

volume produced in the DoD.  The volume of sediment was not affected past the 

significant figures until a 70% error of change in water surface was applied.  An error of 

50% for the stage height is unlikely and would have been stated within the USGS data 

retrieved during the project.  This gives some validity for the normalizing procedure as an 

initial method to account for some of the water column.   

Other sources of uncertainty lie within the survey data itself.  Each LiDAR survey 

has its own vertical accuracy and the production of each DEM was completed by 

Watershed Sciences, Inc.  The water surface in each DEM that was used for the 

differencing was created using some ground control points and an algorithm designed by 

Watershed Sciences Inc.  Stretching that surface over the entire length of the river could 

easily produce some areas that were inaccurate.  These uncertainties are a possible source 

of error for any study using digitally-generated ground surfaces.  The exact volume of 

sediment change within each reach contains some uncertainties.  However, based on the 

overall patterns and other measures of the validity of the results, I am confident in the 

accuracy of the net gain or loss of sediment and general magnitude of the change. 
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Things to Consider for Future Projects 

To further reduce the uncertainty with the water surface during each of the 

LiDAR surveys, water height and discharge measurements should have been taken at 

multiple locations throughout the length of the river. Had the water surface issue been 

addressed earlier, I would have removed it from all of the DEMs and only analyzed 

above water surface areas as in Figures 7 and 10.  Removing the water surface from the 

calculations would have given a minimum net change but the calculated volumes would 

have been more accurate because the water in the DEMs was a partially an artificially 

generated surface.  Unfortunately removing the water surface was too time intensive to be 

completed for the entire river in this project.  Future projects could refine the results by 

taking some of these issues into consideration.
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CHAPTER V 

CONCLUSIONS 

This study tracked sediment transport related to the removal of the Marmot Dam 

with four sets of high-resolution aerial LiDAR surveys using the Geomorphic Change 

Detection software (GCD v.5) created by Joe Wheaton at Utah State University and 

Philip Bailey from Arrow North Research. Within the 2-km reach directly below the 

former dam, the LiDAR analysis with GCD closely matched sediment volumes 

calculated from total-station field surveys (Major et al. 2011) completed over the three 

years following the dam removal. Approximately 110,000 m3 of deposited sediment was 

calculated in this reach using the GCD software and LiDAR; total-station surveys 

completed by the USGS and a private consulting company estimated deposition of 

~105,000m3 of sediment within the 2-km reach in the first year following the dam 

removal (Major et al. 2011). With the use of LiDAR and GCD it was possible to extend 

this initial work by calculating the sediment flux through multiple reaches over the four 

year study period. 

One of the primary concerns with the removal of the dam was the immediate and 

long-term impact that a large input of sediment would have on the river system (Esler, 

2009). The increased sediment load from a potential sediment pulse propagating 

downstream over multiple years could have a negative impact on the environments of 

aquatic life (Wheaton, 2010). The majority of the sediment wedge composed of gravel 

and sand-sized sediment that was deposited immediately after the dam breach is largely 

intact after four years and multiple large flow events. The base of the sediment wedge has 
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not changed since its deposition; only finer sand/silt sediment has been removed from the 

surface. There has been some dispersion of the sediment downstream through the 13-km 

bedrock gorge and into the reach directly below. The appearance of the sediment pulse 

downstream from the gorge sometime after the 2008 LiDAR acquisition and before the 

2010 LiDAR survey indicates that the Sandy River was still reacting to the influx of 

sediment into the river from the dam removal. The 2 km stretch of river directly 

downstream from the gorge had continual net deposition during the post-dam period 

2008-2011. This pattern was even stronger when only the sediment bars within the first 

2-km were isolated from the water and analyzed.  The sediment pulse, however, is not 

distinguishable from normal river processes beyond the 2.5-km stretch below the gorge. 

The robust set of LiDAR data also provided the ability to study how the river 

stores and transports sediment on an annual to biannual scale. The majority of the river 

downstream from the gorge did not show an obvious lasting impact from the dam 

removal, but did show a detailed record of sediment storage and transport. The Sandy 

River is a very active river that transports high amounts of sediment on a yearly basis 

(Major et al. 2011).  Deposition primarily occurred on sediment bars within the channel 

and locations where the channel was in contact with its floodplain. Many cut banks were 

heavily eroded during the study period, in some cases meters of bank were eroded 

between two successive surveys. Most of the intensive erosion occurred during large 

winter floods in 2009 and 2011. The information provided from the lower reaches could 

be helpful in determining long-term sediment budgets for the river and planning for 

locations of possible hazards such as bank failure or flooding. 



  45 

  

With many dams becoming outdated in the U.S. (Burroughs et al. 2009), the 

importance of monitoring is critical for understanding future implications to the river. 

Repeat LiDAR surveys are one way to accomplish that. This study demonstrated that 1-

meter DEMs from aerial LiDAR combined with the use of the GCD software can 

accurately estimate erosion and deposition resulting from a dam removal, and that a 

sediment pulse could be detected and tracked downstream for 13 km. The results 

presented in this study support the utility of LiDAR and the GCD software as an effective 

tool to quantify the geomorphic response to a dam removal.  
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