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ABSTRACT 

GEOLOGIC MAPPING ALONG THE BENTON SPRING FAULT, NEVADA: 

DEXTRALLY-OFFSET TUFF-FILLED PALEOVALLEYS  

IN THE CENTRAL WALKER LANE 

by 

Peter Brent Dubyoski Jr. 

  Documenting the spatiotemporal evolution of fault systems along the 

western margin of North America is a prerequisite for characterizing the forces 

which drive faulting across the U.S. Cordillera. Within the Cordillera, the Walker 

Lane, characterized by active intracontinental faults, straddles the western edge of 

the Basin and Range Province and the eastern edge of the Sierra Nevada. In the 

Gabbs Valley Range, central Nevada, eastern Central Walker Lane, I combine 

new mapping, geochronology, and structural studies to document the geometry 

and timing of dextral fault slip along the Benton Spring fault, an active 

intracontinental fault. The Benton Spring fault is one of four major dextral faults 

in the region; my studies provide insight into this fault’s late Oligocene and 

Miocene fault slip history. Utilizing the walls of a series of inset volcanic rock 

infilled paleovalleys, which are preserved in the Gabbs Valley Range, I identified 

five markers dextrally offset across the Benton Spring fault. Previous studies 

provided ages for three of the volcanic units which infill these paleovalleys, while 

my new geochronology provides ages for a further two. All five markers record, 

within error, the same magnitude of dextral offset, indicating that the average 
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dextral offset of 6.9 ± 1.5 km accumulated after the emplacement of the youngest 

dated volcanic unit at 20.14 ± 0.26 Ma. The adjacent Petrified Spring fault records 

similar magnitude of dextral offset, and azimuth and timing of fault slip as the 

Benton Spring fault; I assume that similar forces drove initiation of slip along 

both faults and thus slip likely initiated at the same time. Initiation of dextral slip 

along the major dextral faults of the eastern Central Walker Lane is constrained to 

the Middle Miocene as is initiation of slip along the normal faults bounding the 

eastern flank of the Sierra Nevada and within the Basin and Range. Given the 

close spatial-temporal relationship of the two different fault types, I suggest the 

same forces drove both normal and strike-slip faulting.  
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CHAPTER I 

INTRODUCTION 

The Mesozoic-Cenozoic Pacific-North American plate boundary records the 

transition from an Andean-style subduction margin to a transform boundary (e.g. Atwater 

and Stock, 1998; DeMets and Merkourkiev, 2016). The subduction and fragmentation of 

the Farallon plate at ~28 Ma resulted in the contact between the Pacific and North 

American plates, resulting in the onset of the transform slip along this plate boundary 

(Atwater and Stock, 1998) (Figure 1). The contact between the Pacific and North 

American plates has lengthened since 28 Ma as the Farallon plate was further fragmented 

and the resulting microplates either subducted beneath the North American plate or were 

captured by the Pacific plate (Atwater and Stock, 1998) (Figure 1). Reconstructions of 

the Pacific-North American transform plate boundary since 20 Ma indicate a ~70% 

increase in relative motion from 19.7 to 9 ± 1 Ma and a subsequent rate of motion which 

varied by less than ± 2 percent (DeMets and Merkouriev, 2016). Modern plate boundary 

strain is primarily accommodated along the San Andreas fault system, with ~20-25% of 

that strain being distributed east of the Sierra Nevada in the Walker Lane (e.g. Dixon et 

al., 1995; Bennett et al., 2003; Faulds and Henry, 2008; Lee et al., 2009; Delano et al., 

2019) (Figure 1).  

The Walker Lane is a zone of dextral shear defined by a system of dominantly 

NW-striking strike-slip faults; the zone ranges from 25 to 130 km in width and extends 

northward from the Mojave Desert along the eastern flank of the Sierra Nevada, 

overlapping with the western edge of the Basin and Range (e.g., Stewart, 1988; Dokka  
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and Travis, 1990; Dixon et al., 1995; Bennett et al., 2003; Faulds and Henry, 2008) 

(Figure 1 and 2). Displacement is recorded earlier in the southern Walker Lane than in 

the northern Walker Lane, suggesting that, like the San Andreas fault, the Walker Lane 

has been propagating northward (e.g. Atwater and Stock, 1998; Faulds et al., 2005; 

DeMets and Merkouriev, 2016). Unlike the San Andreas fault system, which comprises a 

series of extensive, interconnected dextral faults several hundred kilometers in length 

(e.g., Powell et al., 1993), the Walker Lane comprises a system of discontinuous en 

echelon dextral faults kinematically linked by sinistral faults and normal faults (e.g. 

Faulds and Henry, 2008; Delano et al., 2019) (Figure 2). Due to the greater number of 

faults, their geometric complexity, and geographic distribution across the Walker Lane, 

geologic slip rates along the many of faults of the Walker Lane are not well constrained. 

This study aims to provide new constraints on the geometry and magnitude of 

offset, timing of initiation of slip, and geologic slip rates along the Benton Spring fault, a 

dextral fault in the eastern Central Walker Lane (Figure 2). The Central Walker Lane is a 

~130-km-wide dextral shear zone bounded by the Sierra Nevada to the west, the sinistral 

faults of the Mina deflection and Carson domain to the south and north, respectively, and 

Basin and Range extensional faults to the east (e.g., Faulds and Henry, 2008; Bormann et 

al., 2016) (Figure 2). The eastern Central Walker Lane comprises the eastern portion of 

the Central Walker Lane, bounded to the west by the Wassuk Range (e.g., Bormann et 

al., 2016) (Figure 3). Strain in the eastern Central Walker Lane is primarily 

accommodated along four major and two minor dextral faults which pass through the 

Gillis and Gabbs Valley Ranges (Wesnousky, 2005; Lee et al., 2020b) (Figure 3). The 
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Benton Spring fault runs through the Gabbs Valley Range, where underlying Mesozoic 

sedimentary and intrusive rocks are nonconformably overlain by Cenozoic volcanic and 

sedimentary rocks (Hardyman, 1980; Ekren et al., 1980; Ekren and Byers, 1985a, 1985b, 

1985c, 1985d; Hoxey et al., 2020; Lee et al., 2020b).  

To constrain the slip history of the Benton Spring fault, I test two primary 

hypotheses. The first hypothesis is that the Cenozoic volcanic and sedimentary rocks in 

the Gabbs Valley Range fill paleovalleys incised into the Mesozoic bedrock and 

Cenozoic rocks and that the walls and other features of these paleovalleys can be used as 

geologic markers to determine the magnitude of dextral offset across the Benton Spring 

fault. To test this hypothesis, I completed new geologic mapping and structural studies 

along the 25-km long map trace of the Benton Spring fault in the Gabbs Valley Range 

(Figure 2, 3) (Plates 1, 2, and 3). The second hypothesis is that the slip rate along the 

Benton Spring fault varies through time. To test this hypothesis, I collected samples from 

volcanic units that in-filled dextrally offset paleovalleys in the Gabbs Valley Range for 

40Ar/39Ar geochronology to determine the emplacement ages of lavas and tuffs. The ages 

of the emplaced volcanic rocks, coupled with the magnitude of dextral offset for each 

associated geologic marker, allows for calculation of the average slip rates for the Benton 

Spring fault since the emplacement of each dated rock unit. The new data I collected to 

explore these two hypotheses, combined with published fault slip data across the Central 

Walker Lane, provides a basis to address a more complex question: what is the spatial-

temporal distribution of dextral fault slip across the eastern Central Walker Lane? In 

addition, comparing the timing of dextral fault slip for the Benton Spring fault and 



7 
 

published dextral slip in the rest of the eastern Central Walker Lane (Lee et al., 2020b) 

allows an examination of the development of this region in the context of Basin and 

Range faulting and the forces that drive this intracontinental faulting. 
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CHAPTER II 

LITERATURE REVIEW 

Walker Lane Tectonics 

Geodetic studies suggest that the Pacific Plate is moving northwest at rate of ~50 

mm/yr relative to the North American Plate (e.g. Demets and Dixon, 1999; Dixon et al., 

2000, 2003; Bennett et al., 2003; DeMets and Merkouriev, 2016). Approximately 75% of 

this motion is accommodated along the San Andreas Fault system (Freymueller et al., 

1999; Savage et al., 2004). Approximately 80% of the remaining ~13 mm/yr motion is 

distributed throughout the Eastern California Shear Zone and the Walker Lane in western 

Nevada and eastern California (e.g. Bennett et al., 2003). The Walker Lane is a zone of 

dominantly NW-striking dextral faults extending north from the Garlock fault in southern 

California to the California Modoc plateau (e.g. Stewart, 1988; Faulds and Henry, 2008). 

Dextral shear is accommodated along dominantly northwest-striking strike-slip 

faults in the Central Walker Lane, the portion of the Walker Lane exposed between the 

Mina Deflection to the south and the Carson domain to the north (e.g. Cashman and 

Fontaine, 2000; Wesnousky, 2005; Nagorsen-Renke et al., 2013) (Figure 2). Strain is 

transferred from the approximately east-west-striking sinistral faults of the Mina 

deflection into the Central Walker Lane and from there to the northern Walker Lane (e.g. 

Wesnousky, 2005; Delano et al., 2019).  

Based on new interseismic GPS velocities and continuous GPS networks 

monitoring deformation of the Pacific-North America plate boundary, Bormann et al. 

(2016) calculated a deformation budget of ~8 mm/yr across the Central Walker Lane. The 
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difference in deformation budgets between previous GPS studies (e.g. Oldow et al., 2001; 

Bennett et al., 2003) and Bormann et al.’s (2016) study is the result of correction for 

postseismic relaxation following large magnitude earthquakes across the Central Nevada 

Seismic Belt earthquakes (Hetland, 2003; Gourmelen and Amelung, 2005; Hammond et 

al., 2009; Bormann et al., 2016) (Table 1). 

 

Central Walker Lane 

My field area, located in the Gabbs Valley Range, falls within the eastern Central 

Walker Lane and is centered on the Benton Spring fault. Across the eastern Central 

Walker Lane, the majority of dextral motion is accommodated along five major strike-

slip faults spaced between 3 and 10 km apart; the faults are, from west to east, the Agai 

Pai Hills, the Indian Head, the Gumdrop Hills, the Benton Spring, and the Petrified 

Spring faults (Figure 3). 

The Benton Spring fault is the primary fault examined in this study. Assessments 

of the total length of the fault range from 50 km to 95 km (Ekren and Byers, 1984; 

Hardyman, 1984), with the USGS Quaternary Fault and Fold Database of the United 

States listing a length of 87 km (Sawyer, 1998a). Multiple Holocene earthquakes have 

occurred along the Benton Spring fault with estimated maximum magnitudes of Mw ~6.8 

and a recurrence interval of 1,600 – 2,300 years (Angster et al., 2019). Of the six faults of 
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the eastern Central Walker Lane, the Benton Spring fault records the most recent 

recognized surface-rupturing event, which occurred approximately 800 years ago 

(Langille et al., 2018; Angster et al., 2019).  

Mapping of the northern terminus of the Benton Spring fault in the Terrill 

Mountains (Carlson, 2018) identified an Oligocene paleosol dextrally offset ~6 km across 

the fault. This paleosol underlies the Tuff of Toiyabe dated at 23.29 ± 0.02 Ma and 

overlies an older Oligocene tuff of unknown age; this tuff in turn unconformably overlies 

the Tuff of Gabbs Valley, dated to 24.95 ± 0.02 Ma (Carlson, 2018). Dextral slip along 

the section of the Benton Spring fault exposed in the Terrill Mountains is therefore 

constrained to a maximum initiation age of 24.95 ± 0.02 Ma. Carlson (2018) notes that 

the trace of the Benton Spring fault at its northern terminus is more curvilinear than 

elsewhere in the Central Walker Lane; this change in strike was interpreted as a possible 

indication of strain partitioning to dextral faults obscured beneath Quaternary sediments 

on Rawhide Flat to the northeast. 

To the south of the Gabbs Valley Range, the Benton Spring fault can be traced at 

the base of the western edge of the Pilot Mountains (Oldow and Meinwals, 1992; Oldow 

and Dockery, 1993, Bell, 1995). A lack of offset markers along this trace of the fault 

precluded assessment of the style and timing of fault slip. It is unclear whether the 

Benton Spring fault continues farther south and acts as a range-bounding fault for the 

Monte Cristo Range; the southernmost mapped fault traces attributed to the Benton 

Spring fault are located near the mouth of Long Canyon south of the Pilot Mountains 

(Dohrenwend, 1982). On the western margin of the Monte Cristo Range, several normal 



11 
 

faults strike parallel to the western boundary of the range, and sub-parallel to the 

southernmost mapped trace of the Benton Spring fault in the Pilot Range; to the south the 

map traces of these faults terminate just north of the Coaldale fault (Dohrenwend et al., 

1996) It is unclear whether these faults represent a portion of the Benton Spring fault or 

are unassociated with the Benton Spring fault. 

An elastic block model of Central Walker Lane GPS velocities yielded a dextral 

slip rate of 0.98 ± 0.36 mm/yr for the Benton Spring fault, 0.58 ± 0.47 mm/yr for the 

Petrified Spring fault, and 0.47 ± 0.14 mm/yr for the Indian Head fault (Bormann et al., 

2016). The 78 fault trains used to define boundaries for the 35 blocks in the Bormann et 

al. (2016) model represented a simplification of known Quaternary active faults; the 

major faults of the eastern Central Walker Lane were simplified to three fault trains along 

the map traces of the aforementioned faults. The model slip rates for the Petrified Spring 

and Benton Spring faults comprise the majority of the 2.7 ± 0.7 mm/yr of slip 

accommodated across the Gabbs Valley and Gillis Ranges (Bormann et al., 2016).  

Offset Markers and Magnitudes 

Early work assessing dextral offset across the Benton Spring fault yielded a range 

of estimates: Ekren and Byers (1984) suggested 6-10 km based on offset of a Cretaceous 

granite pluton and 8 km based on the Cenozoic Nugent tuff, while Stewart (1988) 

matched the southern limit of Cenozoic tuffs east and west of the Benton Spring fault 

yielding 5-6 km of offset.  
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CHAPTER III 

GEOLOGIC ROCK UNITS AND AGES IN THE BENTON SPRING FIELD 

AREA 

Based on field mapping at the 1:12,000 scale of a ~230 km2 area straddling the central 

section of the Benton Spring fault, Gabbs Valley Range (Plate 1), I separate geologic 

units in the field area into Mesozoic, Oligocene, Miocene, Pliocene, and Quaternary 

phases (Plate 2). Below, I briefly describe the map units used in the geologic map of Plate 

1, which encompasses the field area of the study. Detailed descriptions of pre-Quaternary 

map units can be found in Plate 2. The Mesozoic basement rock is composed of 

sedimentary, metasedimentary, and intrusive igneous rocks and is unconformably 

overlain by Cenozoic paleosols, Oligocene to Miocene tuffs, fluvial gravels, lava flows, 

and lacustrine deposits. Many of these units appear to fill a primary paleovalley incised 

into the Mesozoic basement (Figure 4). Pliocene alluvial and colluvial deposits lie 

unconformably atop the Oligocene and Miocene volcanic and sedimentary sequence, and 

Quaternary sedimentary deposits lying unconformably atop older units represent the 

youngest units in the field area (Plates 1, 2, and 3). Locally, the combination of areal 

distribution of volcanic rocks, geometry of contacts, range of lithologies exposed, and 

orientation of volcanic structures indicates that five NW-SE to E-W trending paleovalleys 

are nested within the primary NW-SE trending paleovalley incised into the basement 

rocks. All pre-Quaternary units, and the infilled paleovalleys, are dextrally offset by the 

NNW-striking Benton Spring fault. 
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Mesozoic Units 

 The Mesozoic basement is comprised of the Triassic Luning Formation (Ekren 

and Byers, 1985a), Triassic crystalline limestone (Trli), Jurassic diorite and granodiorite, 

and Cretaceous-Jurassic granite (Plate 2). The Cretaceous-Jurassic granite intrudes older 

Mesozoic units. This granite generally forms the base of the primary paleovalley and is 

locally overlain by a Mesozoic-Cenozoic paleosol consisting of strongly weathered, 

decomposed granite, granite core stones, and grus (Figure 5b) that is interpreted as 

evidence of long-term exposure. 

Oligocene Units 

Oligocene rocks in the field area consist of welded ash-flow tuffs and deposits 

comprised of altered or brecciated byproducts of these tuffs (Plate 2). These tuffs are 

generally confined to paleovalleys throughout the field area and the source calderas have 

been located to the east of the field area (Proffett and Proffett, 1976, Templeton 1998, 

Henry 2008, Henry and John 2013).  

Nonconformably overlying the Mesozoic basement rock is the oldest observed 

Oligocene unit, the Guild Mine Member of the Mickey Pass Tuff (Obmg). The exposed 

contact between the Mickey Pass Tuff and Mesozoic units is generally high-angle and is 

frequently marked by the presence of the aforementioned paleosol, grus, and corestones. 

Outcrops frequently exhibit evidence of extensive hydrothermal alteration. The unit has 

an interpreted eruptive volume of 600 km3 (Proffett and Proffett, 1976, Templeton 1998). 

Sanidine from this unit yielded an 40Ar/39Ar age of 27.28 ± 0.02 Ma (Henry and John, 

2013).  
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Nonconformably overlying the Guild Mine Member of the Mickey Pass Tuff is 

the Singatse Tuff (Obsi) (Plates 1 and 2). The basal portion of the Singatse Tuff is dark 

purple and outcrops directly atop the Guild Mine Member of the Mickey Pass Tuff in the 

southern portion of the field area. Elsewhere, the Singatse Tuff is in near vertical contact 

with the older Obmg (Figure 4b). Some exposures of the Singatse Tuff west of the 

Benton Spring fault exhibit extensive silicification and argillization, indicating extensive 

hydrothermal alteration. The Singatse Tuff is also a large-volume pyroclastic flow 

deposit found throughout Nevada and has an interpreted eruptive volume of 3500 km3 

(e.g. Proffett and Proffett, 1976). Sanidine from the Singatse Tuff yielded an 40Ar/39Ar 

age of 26.85 ± 0.02 Ma (Henry and John, 2013).  

Lying unconformably atop, and in some cases banking against, the Singatse Tuff 

and locally lying atop a dark-grey fluvial gravel is the Blue Sphinx Tuff (Osp) (Plates 1 

and 2; Figure 4c). The fluvial gravel (too thin to map as an individual unit) contains clasts 

up to 10 cm in diameter of both the Guild Mine Member of the Mickey Pass Tuff and the 

Singatse Tuff. In the field area the Blue Sphinx Tuff exhibits extensive hydrothermal 

alteration in nearly all outcrops. The Blue Sphinx Tuff has a thickness of up to 100 m in 

the field area and records a sanidine 40Ar/39Ar age of 24.30 ± 0.05 Ma (Henry and John, 

2013).  

Unconformably overlying the Blue Sphinx Tuff and other Oligocene units are a 

series of rhyodacite flows, the Lavas of Nugent Wash (Mln) (Plates 1 and 2). Mapped as 

a single unit, this series of lava flows ranges from dark red to dark brown with visible 

flow banding (Plates 1 and 2).  
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Unconformably overlying the lavas of Nugent Wash is the Nugent Tuff (Mhn), a 

series of ash-flow tuff deposits that were not distinguishable in the field, and as such were 

mapped as a single unit (Plates 1 and 2). Ash-fall tuff deposits were frequently observed 

between the different ash-flow deposits, but correlation between outcrops proved 

impossible in the field.  

A hornblende-rich andesite (Ola) outcrops with high-angle contacts against the 

Tuff of Nugent Wash and the Tuff of Redrock Canyon east of the Benton Spring fault in 

the northern portion of the field area (Plates 1 and 2). This andesite was also observed on 

the west side of the Benton Spring fault at the northern end of the fault trace (Plate 1). 

Clasts of a similar blue-green andesite with large hornblende phenocrysts were observed 

throughout drainages west of the Benton Spring fault, but no corresponding outcrops 

were located. Plagioclase from the west side of the fault yielded a weighted mean plateau 

age of 23.06 ± 0.03 Ma (this study) (Plate 2; Table 1).  

Miocene Units 

Nonconformably overlying the Blue Sphinx Tuff is a fine-grained white to light 

gray air-fall tuff interbedded with tuffaceous sandstones and lacustrine deposits (Ms) 

(Plates 1 and 2). Previous field studies (Ekren and Byers 1984a, 1984b, 1984c, 1984d) 

indicate that outcrops of similar air-fall tuff interbedded with lacustrine sediments are 

present throughout the Gabbs Valley Range. Other outcrops of Ms described by Ekren 

and Byers (1984a, 1984b, 1984c, 1984d) are in depositional contact with the Lavas of 

Nugent Wash, the Tuff of Nugent Wash, the Tuff of Redrock Canyon, and the Rhyolite 

of Gabbs Valley Range. 
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A sequence of lava flows, designated the Lavas of Redrock Canyon, pinches out 

against the Singatse Tuff and overlies the Lavas of Nugent Wash and the Tuff of Nugent 

Wash (Plate 1).  This sequence, designated the Lavas of Redrock Canyon, consists of 

three map units: Mrb, Mri, and Mlrr (Plate 2). Unit Mrb is a basaltic andesite which 

exhibits a dark sheen where locally quenched, typically at the lower exposures of this 

deposit. Unit Mri, a dacite, is generally found overlying the basaltic andesite. Unit Mlrr is 

a light grey to dark pink quartz latite (Plate 2). These units were only observed east of the 

Benton Spring fault. 

The Tuff of Redrock Canyon (Mrc) drapes over and frequently pinches out 

against the Lavas of Nugent Wash, the Tuff of Nugent Wash, the Lavas of Redrock 

Canyon, and unit Ms (Plate 1). The Tuff of Redrock Canyon grades from rhyodacite at 

the base to quartz latite in the uppermost portions of the unit (Plate 2). Petrologically, the 

Tuff of Redrock Canyon is almost identical to the Blue Sphinx Tuff; locally angular 

granite lithic fragments and fragments of the lavas of Redrock Canyon present in the Tuff 

of Redrock Canyon allow for distinction. Multiple outcrops of the Tuff of Redrock 

Canyon preserve cooling columns (Figure 5a).  This unit yielded a sanidine 40Ar/39Ar age 

of 22.95 ± 0.04 Ma (this study) (Plate 2; Table 1). 

Cross-cutting the Singatse Tuff, the Blue Sphinx Tuff, and the Tuff of Redrock 

Canyon in various locations throughout the field area is unit Mmi, a series of andesitic 

dikes (Plates 1 and 2). The three most prominent outcrops of unit Mmi in the field area 

are found along the Benton Spring fault: the northernmost of the three is located west of 

the Benton Spring fault and its eastern edge truncates at the fault, the next outcrop to the 
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south is bounded on both sides by the Benton Spring fault, and the southernmost is 

located east of the Benton Spring fault and its western edge truncates at the fault. Other 

outcrops of Mmi were also observed along the contact between the Blue Sphinx Tuff and 

a younger unit. As outcrops of this unit were observed throughout the field area and no 

clear contact was identified which could be used as a fault marker, unit Mmi was not 

used in my evaluation of dextral slip magnitudes. Plagioclase from the northernmost dike 

yielded a weighted mean plateau age of 22.694 ± 0.102 Ma (this study) (Plate 2; Table 1). 

Unconformably overlying the Singatse Tuff and the Blue Sphinx Tuff and post-

dating the Tuff of Redrock Canyon is a light grey quartz latite (Mql) (Plate 2). In most 

outcrops, the majority of the phenocrysts have been replaced with sericite due to apparent 

hydrothermal alteration. This latite was only observed outcropping west of the Benton 

Spring fault. Unit Mql yields a plagioclase 40Ar/39Ar age of 20.98 ± 0.10 Ma (this study) 

(Plate 2; Table 1). This age indicates that unit Mql is younger than unit Mrc and thus 

differentiates Mql from the quartz latite Mlrr east of the Benton Spring fault.  

Unconformably overlying the Blue Sphinx Tuff, a light grey andesite lava (Mlo) 

was only observed in a single outcrop in the northeast portion of the field area (Plates 1 

and 2). Mlo is interpreted as a localized lava flow. 

In various locales throughout the field area, the Rhyolite of Gabbs Valley Range 

(Mrl) exhibits intrusive contacts with local rocks as well as localized channelized lava 

flows (Plate 1). Outcrops of this lava are largely unaltered, unlike most other volcanic 

units in the field area. Immediately east of the major splay of the Benton Spring fault 

(Plate 1), a quenched outcrop of the Rhyolite of Gabbs Valley Range was observed; the 
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proximity to an airfall tuff deposit, which preserves indications of lacustrine deposition, 

suggests that this flow was deposited in a fluvial or lacustrine environment. Plagioclase 

from the Rhyolite of Gabbs Valley Range records an 40Ar/39Ar age of 20.14 ± 0.26 Ma 

(this study), making it the youngest dated offset unit in this study (Plate 2; Table 2).  

Unconformably overlying the Singatse Tuff, the Blue Sphinx Tuff, the Lavas of Nugent 

Wash, the Tuff of Nugent Wash, the lavas of Redrock Canyon, the Tuff of Redrock 

Canyon, and the Rhyolite of Gabbs Valley Range are the Lavas of Mount Ferguson (Mlf) 

(Plates 1 and 2). Mlf consists of a series of lavas ranging from hypersthene andesite to 

quartz latite that cover much of the eastern edge of the field area (Ekren and Byers, 

1984b; this study). Individual flows within the sequence are often separated by light grey 

air-fall tuff deposits. Cooling columns were frequently observed at various elevations in 

the Lavas of Mount Ferguson. As this unit generally covers all other outcrops where it is 

present, it acted as a boundary for eastern extent of the field area. The age of the Lavas of 

Mount Ferguson has been constrained by multiple studies; hornblende from a basal flow 

yielded a K/Ar age of 22.5 ± 0.6 Ma (Ekren et al., 1980), 40Ar/39Ar geochronology on 

plagioclase from a flow near the top of Mlf yielded an age of 18.91 ± 0.03 Ma (Lee et al., 

2020b), and a K/Ar age of 15.0 ± 0.5 Ma was reported for a plagioclase from one of the 

youngest flows (Ekren et al., 1980).  

Miocene to Quaternary Units 

 Unit QMb is a dark red to light red tectonite consisting of loose soil 

interpreted as fault gauge; these deposits were only observed outcropping along the 

Benton Spring fault (Plates 1 and 2; Figure 8b). The unit is hypothesized to have initially  
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developed cotemporally with initiation of slip along the Benton Spring fault, continuing 

into the modern. The southernmost exposure of QMb consists of a mélange of unsorted, 

matrix-supported intrusive and sedimentary breccia clasts ranging from pebbles <5 cm in 

diameter to outcrops >20 m in diameter. All clasts appear derived from local Mesozoic 

units. The matrix is comprised of clay and is fault-gouge derived. Other outcrops of Qmb 

did not contain clasts identifiable as being sourced from specific units from the field area. 

Qmb outcrops at bends and splays of the Benton Spring fault, with the most prominent 

example occurring at the major splay in the Benton Spring fault in the Gabbs Valley 

Range (Plate 1).  

 Several inactive alluvial fans are preserved throughout the field area; those that 

have lithified into fanglomerate are designated unit QPfg and are frequently incised by 

later fluvial features. QPfg is comprised of clasts of Mesozoic, Oligocene, and Miocene 

units and appears to represent the oldest phase of fan-building preserved in the field area. 

Non-lithified, inactive alluvial fans are designated QPf. These features are typically 

located in areas that do not act as modern drainages, but occasionally represent 

topographic highs that show signs of erosion, rather than fan-building, along modern 

drainages.  

Quaternary Units 

 Much of the field area in areas of high relief is covered by colluvial sediment (Qc) 

which obscures older units and contacts. A block of the Lavas of Mount Ferguson was 

observed downslope from the contact between the Tuff of Redrock Canyon and the Lavas 

of Mount Ferguson; this block was interpreted as a landslide deposit (Qls). 
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Unconsolidated alluvial sediments that accumulated outside of the stream beds and 

channels were mapped as alluvial fan deposits (Qaf). Along the Benton Spring fault as 

well as elsewhere in the field area, seasonally active stream beds and channels are filled 

with alluvial sediments (Qa).  

40Ar/39Ar Geochronology 

 To determine emplacement ages for volcanic units within the paleovalleys 

observed in the Gabbs Valley Range and to allow calculation of fault slip rates based on 

those ages and the magnitude of offset of associated geologic markers, 40Ar/39Ar 

geochronology samples were collected from five tuffs, lavas, and dikes (units Ola, Mrc, 

Mmi, Mql, and Mrl in Plates 1 and 2) in the field area. Units Mrc, Mmi, Mql, and Mrl 

were selected in an effort to determine slip rates along the Benton Spring fault based on 

three criteria: those units which exhibited paleovalley-style depositional environments, 

which were observed both east and west of the Benton Spring fault, and recorded dextral 

offset across the Benton Spring fault. As unit Mmi appears to record two age populations 

due to the presence of non-atmospheric (Appendix A, Figure A1) and no contact was 

observed which was consistent both east and west of the Bento Spring fault, the age for 

unit Mmi was not used in this study. Unit Ola was collected along the Petrified Spring 

fault and was not used to assess dextral slip across the Benton Spring fault. To collect 

samples appropriate for 40Ar/39Ar dating, minimally-altered outcrops were located within 

the field area for each unit of interest. A heavy maul was used to remove cobble-sized 

pieces of each outcrop, which were then broken in the field with standard rock hammers 

to fragments no more than 5 cm long. Any fragments displaying evidence of weathering 
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or hydrothermal alteration were discarded, and the process was repeated until between 2 

and 3 kilograms of fragments were collected.  

 Samples were then prepared for 40Ar/39Ar analyses at the USGS facility in Menlo 

Park, CA, under the supervision of Dr. Andrew Calvert. Samples were crushed, washed, 

and sieved into standard grain sizes: 125-250µm, 250-500µm, 500-1000µm, 1000-

1400µm. For samples with abundant feldspars, appropriate size intervals were selected; 

for samples where fewer grains were recovered, a combined size interval of 125-1000 µm 

was used. Size intervals were documented for four samples (Table 2). All samples were 

subsequently washed in an ultrasonic bath; clean groundmass material was then separated 

via a Frantz magnetic separator at various settings and all feldspars were hand-picked 

under a binocular microscope. Feldspars were etched with hydrofluoric acid and run 

through the Frantz magnetic separator again as necessary to remove contaminants. 

Samples were then given to the staff of Dr. Calvert and analyzed at the USGS TRIGA 

reactor following the methods described in Appendix A of Nagorsen-Rinke et. al. (2013) 

using the 27.87 Ma Taylor Creek sanidine as a neutron flux monitor, and ages were then 

re-calculated based on the 28.4378 Ma Taylor Creek sanidine to make them comparable 

to the Kuiper et. al. (2008) astronomical age (Appendix A).  
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CHAPTER IV 

EVIDENCE FOR PALEOVALLEYS 

 Previous mapping in the Gabbs Valley Range interpreted unconformable contacts 

between Mesozoic basement rock and Oligocene and Miocene volcanic units as low-

angle normal faults (Hardyman, 1980; Ekren and Byers, 1985 a, b, c, d). Multiple 

volcanic tuffs with source calderas in central Nevada can be correlated with ash-flow tuff 

deposits as far west as the Sierra Nevada and these deposits are interpreted as indicating a 

westward-draining regional network of paleovalleys across the Nevadaplano (e.g. Faulds 

et. al., 2005; Henry and Faulds, 2010). I hypothesize that the unconformable contacts 

described in Chapter III instead provide evidence in support of the development of late 

Mesozoic to early Cenozoic large-scale erosion features in the field area. Paleovalleys in 

this region are often identified by volcanic and sedimentary rocks unconformably 

overlying older rock of varying ages and composition, with fluvial gravels often directly 

underlying the volcanic units (e.g. Faulds et. al., 2005; Henry and Faulds, 2008). 

Paleovalleys are also identified by the distinctive cross-sectional geometry of the contacts 

between the infilling units and the basement rock (Henry, 2008). The contacts are 

typically vertical in some localities and nearly horizontal in others; these contacts are 

interpreted as the walls and floors of the paleovalleys, respectively (Plate 3). Multiple 

volcanic units are often confined within a single paleochannel that was incised into the 

basement rock, and based on my observations described below, I interpret the geometry 

of the contacts between volcanic units, sedimentary units, and basement rock in the 
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Benton Spring fault field area as evidence for a history of repeated incision and 

depositional events (e.g. Henry 2008; Lee et al., 2020b) (Figure 4).  

 My new mapping and field observations identified five paleovalleys with contacts 

between the incised and infilling units preserved both east and west of the Benton Spring 

fault. Each of the five paleovalleys I mapped will hereafter be referred to by the in-filling 

unit or by the letter designating the location of the contact used as a marker on Plate 1.  

Paleovalley A is infilled with the Guild Mine Member of the Mickey Pass Tuff, 

Obmg (Plates 1 and 3). Obmg is well-documented as a paleovalley-filling ash-flow tuff 

across the western Basin and Range (Proffett and Proffett, 1976; Ekren and Byers, 1984; 

Templeton, 1998; Henry, 2008; Lee et al., 2020b). While not observed in the course of 

my mapping, Proffett and Proffett (1976) reported a Paleogene basal conglomerate 

marking the base of the Guild Mine Member of the Mickey Pass Tuff in the Singatse 

Range and Ekberg (2005) report the same basal conglomerate in the Gillis Range. The 

formation of this conglomerate indicates the fluvial nature of the depositional 

environment. Within my field area, the southern contact between the Cretaceous-Jurassic 

granite and the Guild Mine Member of the Mickey Pass Tuff is marked by strongly 

weathered, decomposed granite, granite core stones, and grus (Figures 5b and 5c). The 

northern boundary of this paleovalley was not observed and is likely either eroded and 

covered by younger volcanic units or alluvial deposits (Plate 1). The presence of the grus 

and paleosol, coupled with the broad U-shaped geometry in cross section of the contact 

between the Guild Mine Member and the underlying granite (cross-section E in Plate 3), 
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support the interpretation that the Guild Mine Member of the Mickey Pass Tuff filled a 

paleovalley developed within Mesozoic basement.  

The second paleovalley, Paleovalley B, is infilled with the Singatse Tuff (Plates 1 

and 3). The Singatse Tuff is exposed in outcrops in a paleovalley in the Singatse Range 

(Proffett and Proffett, 1976), ~50 km west of the study area indicating that these tuff-

filled paleovalleys traversed the Oligocene surface for at least 10s of kilometers. This tuff 

exhibits both high- (Figure 5d) and low-angle, conformable and unconformable contacts 

with the Guild Mine Member of the Mickey Pass Tuff (Plates 1 and 3). These two types 

of contacts occur in close proximity to one another, with the high-angle contacts locally 

occurring at higher elevations than the low-angle contacts. No significant paleosol 

development was observed between the Guild Mine Member and the Singatse Tuff. The 

high-angle contacts are interpreted as paleovalley walls and the low-angle contacts as the 

base. I interpret these contacts as being indicative of the U-shaped cross-sectional 

geometry typical of paleovalleys (cross-section E in Plate 3). 

The third paleovalley, Paleovalley C, is infilled with the Blue Sphinx Tuff (Plates 

1 and 3). This unit exhibits high-angle contacts with the Singatse Tuff east of the Benton 

Spring fault and exhibits both low-angle and high-angle contacts west of the Benton 

Spring fault (Plates 1 and 3). The high-angle contacts west of the Benton Spring fault are 

largely obscured beneath modern colluvium. A breccia consisting of angular fragments of 

the Guild Mine Member of the Mickey Pass Tuff and the Singatse Tuff within a dark-

colored matrix was observed west of the Benton Spring fault (Figure 5e). A baked 

contact is present in the uppermost portions of the breccia, which has been heavily 
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silicified. The Blue Sphinx Tuff is frequently found in direct contact with the Singatse 

Tuff and is highly friable in those outcrops closest to the contact, suggesting the presence 

of surficial water at the time of deposition. The evidence in support of a fluvial 

environment at the time of deposition and the combination of high- and low-angle 

contacts offers further support that the Blue Sphinx Tuff was deposited in a paleovalley. 

Due to the presence of younger volcanics which overlie the Blue Sphinx Tuff, the 

location of the southern paleovalley wall is poorly constrained and is inferred from a 

single topography-cutting contact between the Singatse Tuff and the Blue Sphinx Tuff 

(Plate 1). 

The fourth paleovalley, Paleovalley D, is filled with the Tuff of Redrock Canyon 

(Plates 1 and 3). East of the Benton Spring fault, the Tuff of Redrock Canyon was 

observed both north and south of a local topographic high consisting of the older lavas of 

Redrock Canyon (Plate 1). The northern contacts of both exposures east of the Benton 

Spring fault are obscured by younger lava flows from the Rhyolite of Gabbs Valley 

Range and the Lavas of Mount Ferguson or are in high- and low-angle contact with the 

older Lavas of Redrock Canyon (Plate 1). The southern contacts with older units for both 

exposures were observed; for the northern channel the map trace of the contact trends 

NW-SE, while the map trace of the southern contact trends NE-SW (Plate 1). The 

northern exposure preserves high-angle contacts between the Tuff of Redrock Canyon 

and older lava units of Redrock Canyon along the southern contact, which I interpret as 

evidence that this contact defines a paleovalley wall (Plates 1 and 3). For the southern 

exposure, contacts with the lavas of Nugent Wash and the Nugent Tuff are shallowly 
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dipping, implying deposition on a floodplain adjacent to the paleovalley rather than in a 

paleovalley (Plates 1 and 3). I interpret this distribution of the tuff as evidence that the 

pyroclastic flow was confined to two separate channels east of the Benton Spring fault 

(Plate 1). West of the Benton Spring fault, the Tuff of Redrock Canyon displays low- and 

high-angle contacts atop and adjacent to the Singatse Tuff and Mickey Pass Tuff (Plate 

1). The trend of the contact between the Tuff of Redrock Canyon and the older units has a 

trend of NW-SE. Cooling column intersection lineations in an outcrop of the Tuff of 

Redrock Canyon yield a Fisher Mean Vector (n = 10) with trend and plunge of 216, 36 

(Figure 6) oriented towards the contact between Mrc and Obsi in Wildhorse Canyon. 

These measurements are interpreted 

as evidence that west of the Benton 

Spring fault, the Tuff of Redrock 

Canyon was deposited against a 

paleovalley wall which strikes NW 

and dips 54° NE (Figure 5a).  

The fifth paleovalley, 

paleovalley E, is infilled with the 

Rhyolite of Gabbs Valley Range, unit 

Mrl (Plates 1 and 3). The Rhyolite of 

Gabbs Valley Range was observed in 

contact with the Singatse Tuff, airfall 

tuff unit Ms, and the Tuff of Redrock 
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Canyon (Plate 1). Cooling columns intersection lineations within Mrl observed east of the 

Benton Spring fault exhibited a plunge of 40 degrees, decreasing up-slope to 25 degrees 

as distance from a local outcrop of the Tuff of Redrock Canyon increased (Figure 7). This 

type of rosette-style cooling column is common where lava is deposited atop non-

horizontal surfaces and indicates that paleovalley incision continued to occur after the 

deposition of the Tuff of Redrock Canyon. West of the Benton Spring fault, the Rhyolite 

of Gabbs Valley Range 

lava unconformably 

overlies heavily-altered, 

friable outcrops of the 

Blue Sphinx Tuff as well 

as intensely-altered, 

silicified portions of the 

Singatse Tuff.  

The trends of the 

paleovalleys range from 

WNW-ESE to NNW-SSE (Figure 3). The oldest paleovalley, paleovalley A, was incised 

into the Mesozoic basement rocks of the Gabbs Valley range and reinterpretation of 

previous mapping suggests that this paleovalley was ~5-km-wide (Plate 1, Figure 3). 

Subsequent periods of erosion resulted in the development of a series of nested younger 

paleovalleys that were confined by the initial paleovalley (Plate 1, Figure 3 and Figure 7). 

Between the deposition of the Singatse Tuff and the Blue Sphinx Tuff, the rapid, near-
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linear incision of the paleovalley in the Mesozoic basement appears to have abated; a 

series of meandering, nested paleovalleys were observed incised in the tuffs of the 

Benton Spring group (Plate 1, Figure 3 and Figure 7). As such, the trend of a younger 

paleovalley may vary from its general trend over short distances. The transition from a 

single major paleovalley to a series of meandering, nested paleovalleys has been 

previously documented in western Nevada (Faulds et. al., 2005; Henry and Faulds, 2010).  

While the southern wall of Paleovalley A is readily identified in the field by the 

presence of the well-developed paleosol (map unit KPps), the walls of the younger 

paleovalleys are less well exposed. Several factors contribute to the more limited 

exposures of the younger paleovalley walls. Modern erosional channels often obscure the 

contacts, requiring projection of the contact from the few exposed outcrops which 

preserve surface evidence of the contact. Heavily silicified outcrops were observed near 

the contact between the Tuff of Redrock Canyon and the Lavas of Mount Ferguson, and 

extensive alteration of phenocrysts to sericite was observed in thin section for several 

other units; pervasive alteration may have left these portions of the units more susceptible 

to erosion. I hypothesize that the older, incised rocks were altered near the contact by the 

heat of the younger in-filling units in proximity to the contact, and that the silicification 

observed in these outcrops indicates that alteration occurred concurrent with deposition 

of the Lavas of Mount Ferguson. Another possible interpretation of localized silicic and 

sericitic alteration in proximity to these contacts is that the contact acted as a fluid 

pathway for later hydrothermal fluids. 
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CHAPTER V 

BENTON SPRING FAULT GEOMETRY AND STYLE OF SLIP 

The Benton Spring fault is the longest of the four major dextral faults of the 

eastern Central Walker Lane, followed by the Petrified Spring Fault (e.g. Hardyman 

1980; Ekren and Byers 1985a, 1985b, 1986a, 1986b; Lee et al., 2020b). The USGS 

Quaternary Fault and Fold database lists a total length of 87 km (Sawyer, 1998a). My 

investigations focus along the central 25 km of Benton Spring fault, representing about 

30% of the entire length of the fault.  

The Benton Spring fault is a NW-SE striking, near-vertical dextral fault exposed, 

in part, in the Gabbs Valley Range. The Benton Spring fault is a single through-going 

fault in most of the field area, with multiple splays along its length (Figure 8A). Exposed 

fault planes were not observed along the Benton Spring fault. As such, the location of the 

fault is constrained by the presence of a single linear, well-developed, seasonally active 

drainage, zones of fault gauge and breccia, and truncated units. In some localities, a well-

developed tectonite marks the location of the Benton Spring fault (Figure 8B). Within my 

field area, the Benton Spring fault has an average strike of 326°, and the relatively linear 

fault trace cross-cuts topography indicating a dip of ~80-90˚. The Benton Spring fault is 

largely obscured beneath an active drainage at the northern end of the field area; no fault 

trace is visible in this drainage. In the south of the field area, the Benton Spring fault 

bifurcates; the western strand follows the drainage which marks the fault elsewhere in the 

field area; the eastern strand cross-cuts topography, defines the contact between the Guild 
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Mine Member of the Mickey Pass Tuff and a Triassic crystalline limestone, and acts as a 

range-bounding fault further to the southeast. 

 

Magnitude of Dextral Offset of Markers 

 In the field area, the Benton Spring fault cuts all units and offsets the sequence of 

five nested paleovalleys. In general, the inferred axis of each paleovalley intersects the 

Benton Spring fault at an angle of 25-35 degrees (Figure 9). Because the southern 

paleovalley walls are best exposed and are oriented subparallel to the inferred axis of 

each paleovalley, I use these steeply to near vertical contacts as the markers for 

measuring the magnitude of dextral offset (Figures 10 and 11).  Geological cross-sections 

were prepared for five transects: cross-sections A, B, and C were prepared to illustrate 

field relations between units and aid in correlation of proposed paleovalleys, while cross-

sections D and E were positioned roughly perpendicular to the proposed paleovalleys to 

illustrate the interpreted geometry (Plate 3). 
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 The error associated with measured offsets based on the paleovalley walls is 

determined by the nature of the projection of the paleovalley wall to the Benton Spring 

fault if the contact does not intersect the fault at the surface, following the method of Lee 

et al. (2020b) (Figure 10). The uncertainty associated with the magnitude of offset for 

each paleovalley wall is estimated based on the dip of the paleovalley wall and the 

distance the contact is projected to the surface expression of the fault. While the walls of 

the paleovalleys are near-vertical in most cases, like most valley walls there is a 

shallower slope at the base. As such, while contacts which are not near-vertical may be 

used to identify a paleovalley wall, significant differences in attitude introduce additional 

uncertainty due to potential differences in paleoelevation. Three categories of contact 

projection were defined to determine minimum estimated offset. For offset markers 

within 100 m of the Benton Spring fault that preserve the high-angle, near-vertical dip of 

the upper portions of a paleovalley wall, a minimum error of 15% is assigned. When 

projecting non-vertical contacts over distances greater than 100 m, a minimum error of 

30% is assigned. When contacts have been buried by younger units on one side of the 

fault, a minimum error of 50% is assigned. Error estimates are further refined based on 

the surface expression of the contacts. For contacts with near-linear map traces, if the 

strike line orientation of the contact on the east side of the fault is within 5° of the 

orientation on the west side of the fault, the minimum error is used. Increasing 

differences in strike line orientation between the expressions of non-horizontals contacts 

on either side of the fault result in a corresponding increase of error.  
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 The western exposure of the oldest dextrally offset marker, the southern wall of 

the Guild Mine Member-filled paleovalley incised into Cretaceous granite, requires the 

least projection to the fault due to the presence the paleosol in outcrops near the fault 

(offset marker AA’ in Plate 1, green line in Figures 8 and 9). As it is necessary to project 

the eastern contact approximately 300 m to the Benton Spring fault, I assign a 

corresponding error of 20% and assess an offset of 7.2 ± 1.4 km. 

 While excellent exposures of the southern paleovalley wall contact between the 

Guild Mine Member of the Mickey Pass Tuff and the Singatse Tuff are preserved in 

contact with the Benton Spring fault on the east side of the fault, west of the Benton 

Spring fault the southernmost high-angle contact between the two is obscured beneath 

modern colluvium approximately 1.5 km west of the Benton Spring fault (offset marker 

BB’ in Plate 1; yellow line in Figures 8 and 9). Although both contacts are near vertical, 

the distance the marker must be projected to the west side of the Benton Spring fault 

requires assignment of an error of 30%. This contact yields an offset of 6.3 ± 1.9 km 

when measured relative to a similar contact which intersects the east side of the Benton 

Spring fault (offset marker BB’ in Plate 1; yellow line in Figures 8 and 9).  

The Blue Sphinx Tuff-filled southern paleovalley exhibits vertical contacts with 

the Singatse Tuff on both sides of the Benton Spring fault. The contact west of the 

Benton Spring fault requires projection ~2.9 km to the fault, as closer to the fault the 

contact is obscured by overlying younger, strongly altered lavas (offset marker CC’ in 

Plate 1; blue line in Figures 8 and 9). A small (~10 m diameter) outcrop of the Blue 

Sphinx Tuff is underlain by the same gravel which underlies another outcrop of Blue 
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Sphinx Tuff further to the north. The presence of this outcrop indicates that the 

paleovalley in-filled with the Blue Sphinx Tuff can be projected to the Benton Spring 

fault, although the location of the southern paleovalley wall can only be inferred to be 

south of this outcrop. East of the Benton Spring fault, the vertical contact between the 

Blue Sphinx Tuff and the Singatse Tuff is projected approximately 1 km to the fault. The 

lack of constraints on the location of the paleovalley wall west of the Benton Spring fault 

and the distance that the paleovalley wall must be projected east of the Benton Spring 

fault requires a corresponding error of 50%. Projection of the two contacts laterally to the 

Benton Spring fault yields an offset of 4.9 ± 2.5 km (offset marker CC’ in Plate 1; blue 

line in Figures 8 and 9). 

The southern wall of paleovalley D is well preserved west of the Benton Spring 

fault and is marked by the development of a large drainage, Wildhorse Canyon, along the 

Tuff of Redrock Canyon-Singatse Tuff contact (offset marker DD’ in Plate 1, Red line in 

Figures 8 and 9). Quaternary alluvial deposits have buried this contact as it approaches 

the Benton Spring fault from the west, and the contact is projected ~750 m to the Benton 

Spring fault. It appears that two channels filled with the Tuff of Redrock Canyon are 

located east of the Benton Spring fault, with a sequence of lavas that both pre- and post-

date the emplacement of the Tuff of Redrock Canyon exposed across the ~2 km between 

the two. The map trace of the shallowly dipping southern wall of the southern channel 

strikes SW-NE as it approaches the Benton Spring fault, although the intersection of this 

paleovalley wall and the Benton Spring fault is obscured beneath the Lavas of Mount 

Fergusson. The map trace of the southern wall of the northern channel preserves a similar 



40 
 

NW-SE orientation to that of Wildhorse Canyon as well as a similar high-angle contact, 

and as such I conclude that it correlates to the marker west of the fault. As the southern 

wall of this channel intersects with the Benton Spring fault, the associated error is due 

solely to projection of the contact west of the Benton Spring fault and an error of 30% is 

assigned. The northern channel preserves an offset of 9.1 ± 2.7 km (offset marker DD’ in 

Plate 1; red line in Figures 8 and 9). 

Paleovalley E, the Rhyolite of Gabbs Valley Range-filled paleovalley, covers 

significantly less area than the other paleovalley-filling volcanic units in this study and is 

generally poorly exposed. The assumed southern wall of the Rhyolite of Gabbs Valley 

Range-filled paleovalley east of the Benton Spring fault is obscured by modern colluvium 

in one of the sections of the field area where the Benton Spring fault–associated drainage 

is most steeply incised (offset marker EE’ in Plate 1; purple line in Figures 8 and 9). 

While the contact is obscured by colluvium closer to the fault, the rhyolite is in contact 

with the Tuff of Redrock Canyon, an older airfall tuff, and the Lavas of Mount Ferguson 

(Plate 1). West of the Benton Spring fault, the Rhyolite of Gabbs Valley Range is inset 

into several older tuffs and lavas, including the Guild Mine Member of the Mickey Pass 

Tuff, the Singatse Tuff, the Blue Sphinx Tuff, and an older quartz latite (Plate 1). The 

rhyolite is again poorly exposed in this area, but the local sequence of tuffs correlates to 

those exposed east of the fault. The southern boundary of the rhyolite west of the fault is 

projected approximately 2 km east to the Benton Spring fault and the southern boundary 

of the paleovalley east of the fault is in contact with the Benton Spring fault–associated 

tectonite. Given projection and the obscured contact, an error of 40% is assigned to the 
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measured offset. An offset of 6.7 ± 2.7 km is assessed based on these two markers and 

their projections (offset marker EE’ in Plate 1; purple line in Figures 8 and 9). 

Each measured offset marker records, within error, the same magnitude of dextral 

offset along the Benton Spring fault (Table 3). Thus, the average dextral offset of the five 

markers is 6.9 ± 1.5 km (1σ).  

 

Timing of Offset and Fault Slip Rates 

 Each of the five markers evaluated in this study record, within error, the same 

magnitude of dextral offset. As such, I conclude that faulting initiated at some point after 

emplacement of the youngest offset infilling unit, the Rhyolite of Gabbs Valley Range, at 

20.14 ± 0.26 Ma (this study) (offset marker EE’ in Plate 1; purple line in Figures 8 and 

9). Dividing the average offset of all offset markers of 6.9 ± 1.5 km by the age of the 

youngest offset marker requires accommodation of uncertainty in both offset and age and 

yields a minimum dextral slip rate of 0.3 ± 0.2 mm/yr since 20.14 ± 0.26 Ma.  
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CHAPTER VI 

DISCUSSION 

Examination of Paleovalley Networks as Fault Marker 

This study was centered in part on examination of Cenozoic volcanic units in the 

field area and determining whether their contacts with the underlying Mesozoic basement 

rock represented low-angle normal faults, as interpreted by Ekren and Byers (1984, 

1985a), or disconformities. Documentation of networks of paleovalleys elsewhere in the 

Walker Lane (e.g. Henry, 2008; Henry et al., 2012; Lee et al., 2020b; Hoxey et al., 2020) 

coupled with observations of well-developed corestones and grus along the contacts 

between Cenozoic volcanic rocks and underlying Mesozoic granites during initial 

reconnaissance, suggested that at least one paleovalley was present in the Gabbs Valley 

Range and was offset across the Benton Spring fault. I did not observe fault related rock 

types and structures, such as fault gauge, slickenlines, visible fault planes, and S-C 

fabrics, or apparent offset of older horizontal and sub-horizontal contacts across these 

contacts. Observations of the features detailed as evidence for paleovalleys (see Chapter 

IV) coupled with the lack of evidence that these contacts are faults confirms that the 

contacts between Cenozoic and Mesozoic units are depositional nonconformities rather 

than low-angle faults.  

My mapping and structural studies show that paleovalleys record a history of 

repeated incision and subsequent deposition of infilling volcanic units thus defining a 

sequence of nested paleovalleys (Figure 7). As previously noted, the distribution of the 

Tuff of Redrock Canyon indicates that multiple channels were present at the time of 
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deposition. While the paleovalley walls generally act as reliable offset markers, 

paleotopographic controls on the development of paleovalleys introduce uncertainty that 

must be accounted for when utilizing paleovalley walls as fault markers in this region. 

My use of paleovalleys as fault markers emphasized locating steep paleovalley walls, 

which are more easily identified in the field than the axis of a paleovalley, as the map 

traces of these near-vertical features are roughly linear. In addition, the intersection of the 

near vertical paleovalley walls with near vertical faults define a near vertical line, which 

is an excellent marker for measuring fault offset. 

Benton Spring Fault Slip History 

The primary goal of my study was to produce a Oligocene-Miocene fault slip 

history for the Benton Spring fault. My geologic mapping, geochronology investigations, 

and collection of structural measurements provide ages and detailed measurements of 

offset magnitudes for pre-Quaternary Cenozoic fault markers across the Benton Spring 

fault in the Gabbs Valley Range. Calculations based on the five offset markers yielded an 

average dextral offset of 6.9 ± 1.5 km; all five markers record similar offset magnitudes 

when accounting for error. As each of the paleovalleys that I mapped record the same 

offset, within error, faulting necessarily initiated at some point after the cooling age of the 

youngest paleovalley filling unit, Mrl, at 20.14 ± 0.26 Ma. Combining the average 

magnitude of offset for the five markers I documented with the cooling age of the 

youngest in-filling unit yields a minimum dextral slip rate of 0.3 ± 0.2 mm/yr for the 

Benton Spring fault in the Gabbs Valley Range.  
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As offset Miocene and younger markers were not observed, an analysis of the 

timing of initiation of fault slip and progressive changes in slip rate between the Miocene 

to present day is not possible with my dataset. However, the adjacent Petrified Springs 

fault records a history of progressive offset of paleovalleys, whereby Middle Miocene 

paleovalleys record a larger magnitude of dextral offset and Late Miocene paleovalleys 

record a smaller magnitude of dextral offset. From these data, Lee et al., (2020b) 

constrained the initiation of dextral slip along the Petrified Spring fault to between 15.99 

± 0.05 Ma and 15.71 ± 0.03 Ma. If initiation of dextral slip along the Petrified Spring is 

interpreted as an indication of initiation of dextral slip along all of the major dextral faults 

of the eastern Central Walker Lane, I calculate an average slip rate of 0.4 ± 0.2 mm/yr for 

the Benton Spring fault since ~16 Ma. This rate is the same, within error, as the minimum 

slip rate of 0.4 mm/yr for the Gumdrop Hills fault to the west and the average slip rate of 

0.4 ± 0.1 mm/yr for the Petrified Spring fault to the east (Lee et al., 2020b). One possible 

interpretation of the slip history for the Petrified Spring fault indicates variable slip rates 

through time (Lee et al., 2020b), thus, it is possible that the Benton Spring fault similarly 

records variable slip rates. 

Multiple studies have examined Pleistocene geologic slip rates along the Benton 

Spring fault in the Gabbs Valley Range. Langille et al. (2018) utilized U-series and 

cosmogenic 36Cl geochronology to date alluvial features offset by the Benton Spring fault 

and calculated offset magnitudes ranging from ~1 m to 70 m. An alluvial fan offset ~31-

34 m yielded U-series ages which were the same within error on both sides of the fault 

(Langille et al., 2018). Utilizing an age of ~13 ka as an estimate for the minimum age of 
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the fan, a slip rate of ~2-3 mm/yr was calculated for the Benton Spring fault in the 

Pleistocene (Langille et al., 2018). Another fan was offset ~25-26 m and yielded a 

cosmogenic 36Cl depth profile age of 10.8 ± 2.5 ka; Langille et al. (2018) calculated a slip 

rate of ~2-3 mm/yr for this offset fan. Angster et al. (2019) utilized an alluvial fan terrace 

riser offset 34.5 ± 2.8 m with a 10Be depth profile age of 21.8 +4.1/-0.6 ka to calculate a 

minimum Late Pleistocene slip rate of 1.5 ± 0.2 mm/yr for the Benton Spring fault. These 

geologic slip rates along the Benton Spring fault are the same, within error, as the 0.98 ± 

0.36 mm/yr model GPS slip rate for the Benton Spring fault (Bormann et al., 2016). 

These rates are higher than both the average slip rate constrained by the youngest offset 

marker along the Benton Spring fault and the average slip rate calculated with the 

assumption that slip initiated cotemporally with the Petrified Spring fault.  

Comparing Miocene and Pleistocene slip rates further highlights the potential 

variation in slip rates through time for the Benton Spring Fault. If the minimum 1.5 ± 0.2 

mm/yr of slip (Angster et al., 2019) documented along the Benton Spring fault in the 

Pleistocene represents a consistent slip rate since initiation of dextral slip along the fault, 

then the average 6.9 ± 1.5 km dextral offset of Cenozoic markers requires that fault slip 

initiated at ~4.6 Ma. If the late Pleistocene slip rate of 2-3 mm/yr calculated by Langille 

et al. (2018) represents a consistent slip rate since initiation of dextral slip along the fault, 

then the average 6.9 ± 1.5 km dextral offset of Cenozoic markers requires that fault slip 

initiated as late as ~2.3 Ma. Data from the Petrified Spring fault indicates that it may 

record variable slip rate through time, with an early phase of rapid slip at 1.5 ± 0.5 mm/yr 

from 16.0 Ma to 11.8 Ma, followed by a slower period of slip at 0.3 ± 0.2 mm/yr from 
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11.8 Ma to 124 ka, followed by a subsequent acceleration to 0.7 +0.3/-0.2 mm/yr since 

124 ka (Lee et al., 2020b). As my data only constrains the maximum initiation of slip 

along the Benton Spring fault, a similar slip history cannot be calculated for the Benton 

Spring fault. However, with the assumption that slip along the Benton Spring fault 

initiated cotemporally with slip along the Petrified Spring fault, the difference between 

long-term geologic slip rates and Pleistocene geologic and GPS slip rates requires a slip 

history wherein slip rates across the Benton Spring fault vary through time. 

Implications for Regional Fault Kinematics 

 One of the primary goals of this study was to determine the spatio-temporal 

distribution of strain across the dextral faults in eastern Central Walker Lane by 

documenting a fault slip history of the Benton Spring Fault. While the absence of middle 

Miocene and younger fault markers precluded the development of detailed Neogene slip 

history for the Benton Spring fault, I determined a maximum initiation age of 20.14 ± 

0.26 Ma for dextral slip along the Benton Spring fault. Coupled with the tightly 

constrained minimum initiation age of 15.71 ± 0.03 Ma for the Petrified Spring fault (Lee 

et al., 2020b), it is clear that slip in the region initiated or was ongoing in the middle 

Miocene.  

 While the slip history of the Petrified Spring fault is the more tightly constrained 

than the slip histories for the other faults of the eastern Central Walker Lane, Lee et al. 

(2020b) also calculated slip rates since the Middle Miocene for the Gumdrop Hills fault 

and Agai Pah Hills fault. The Gumdrop Hills fault is located ~ 4 km west of the Benton 

Spring fault, while the Agai Pai Hills fault is located ~14 km west of the Benton Spring 
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fault (e.g. Ekren and Byers, 1985a, 1985b, 1986a, 1986b). Using the paleovalleys infilled 

with the Guild Mine Member of the Mickey Pass Tuff and the Blue Sphinx Tuff, as well 

as the Tuff of Redrock Canyon for the Gumdrop Hills fault, average dextral offset 

magnitudes of 9.7 ± 1.0 km and 4.9 ± 1.1 km were assessed for the Gumdrop Hills fault 

and Agai Pah Hills fault, respectively (Lee et al., 2020b) (Table 4). These magnitudes of 

dextral offset are the same, within error, as the magnitude of dextral offset across the 

Benton Spring fault. Using the tightly constrained initiation of slip across the Petrified 

Springs fault and the 9.7 ± 1.0 km average dextral offset of markers across the Gumdrop 

Hills fault, a slip rate of 0.6 ± 0.1 mm/yr was calculated (Lee et al., 2020b) (Table 4). 

These slip rates are the same, within error, as the slip rate across the Benton Spring fault 

if dextral slip initiated in the Middle Miocene. While the magnitude of dextral offset 

across the Agai Pah Hills fault is less than the minimum magnitude of dextral offset 

across both the Petrified Spring and Gumdrop Hills faults, the similarities in fault slip 

magnitude suggest a relatively uniform spatial distribution of slip across the eastern 

Central Walker Lane. The markers offset across the Agai Pah Hills fault record an 

average dextral offset of 4.9 ± 1.1 km, and if initiation of dextral slip is constrained to the 

same time as along the Petrified Spring fault, the Agai Pah Hills fault records a slip rate 

of 0.3 ± 0.1 mm/yr since the middle Miocene (Lee et al., 2020b) (Table 4). The 
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similarities in both magnitude of dextral slip and average slip rate since the Middle 

Miocene suggest that fault slip was distributed roughly uniformly across the dextral faults 

of the eastern Central Walker Lane. 

If dextral slip along all major faults in the eastern Central Walker Lane initiated at 

~16 Ma (Lee et al., 2020b), then slip initiated broadly at the same time as normal faulting 

in the Eastern California Shear Zone and the western Basin and Range (e.g. Miller et al., 

1999, Colgan et al., 2010; Lee et al., 2020b). Below, I summarize the timing of normal 

faulting that is broadly similar to the timing of dextral faulting across the faults that 

define the eastern CWL (Table 5).  
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Approximately 130 km northwest of the field area, near Reno, NV, normal slip 

associated with extension in the Sierra Nevada initiated in the Verdi Basin at ~12 Ma 

(Henry and Perkins, 2001) (Table 5). Also northwest of the field area, but within 80 km, 

the Yerington area and Singatse Range record an initiation of extension between 15 and 

13 Ma (Dilles and Gans, 1995; Stockli et al., 2002; Surpless et al., 2002). Southeast of the 

field area, the NE-striking range-bounding normal faults of the Paradise and San Antonio 

ranges record an initiation of normal slip between 24 and 17 Ma (Shaver and 

McWilliams, 1987; John et al., 1989) (Table 5).  

The Mina Deflection, located south of the field area, is hypothesized to have 

initiated in the middle Miocene prior to 12 Ma with the formation of a series of ENE-

trending half-grabens sealed by a ~12 Ma andesite in the eastern Queen Valley-

Montgomery Pass area (Tincher and Stockli, 2009). A second phase of faulting defined 

by extension along ENE-striking sinistral faults initiated further north between 12 Ma and 

3.8 Ma in the Huntoon Mountains (McCosby, 2019). South of the Mina Deflection, range 

bounding normal faults are documented as recording initiation ages at ~12 Ma along the 

west flank of the White Mountains (Stockli at al., 2003), at ~16 Ma along the east flank 

of the Inyo Mountains (Lee et al., 2009), and between 18 and 12 Ma along the Sierra 

Nevada frontal normal fault (Lee et al., 2020a) (Table 5). 

Forces Driving Faulting 

Hypotheses that explain the forces that drive deformation across the western U.S. 

Cordillera must take into account the timing of initiation of slip as well as the geometric 

and kinematic relations between the dextral faults within the eastern Central Walker Lane 
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and range-bounding normal faults 

exposed across the western Basin 

and Range northern Eastern 

California Shear Zone (Figure 12). 

The Benton Spring fault, like the 

Petrified Spring and Gumdrop 

Hills faults (Lee et al., 2020b), 

strikes subparallel to the present-

day azimuth of the motion of the 

Sierra Nevada block relative to the 

Central Great Basin and to the 

NW-SE extension of the western 

Basin and Range (Bennett et al., 

2003; Lee et al., 2020b; this study) 

and strikes roughly perpendicular 

to the ENE-WSW extension 

associated with the NNW-SSE-

striking normal faults of the 

northern Eastern California Shear 

Zone (e.g. Stockli et al., 2003; Lee 

et al., 2009) (Figure 12).  
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The similarity in slip initiation timing along and the geometric relationships 

between the dextral faults of the eastern Central Walker Lane, the normal faults of the 

northern Eastern California Shear Zone, and the normal faults of the western Basin and 

Range suggest that slip in the three regions are kinematically related (Figure 12). To 

accommodate the different Middle Miocene extension directions associated with the 

normal faults of the northern Eastern California Shear Zone and the western Basin and 

Range, Lee et al. (2020b) postulated that NW-striking dextral faults of the eastern Central 

Walker Lane developed as a kinematic link or accommodation zone between the zones of 

normal faults to the north and south.  

While the geometric link between normal faults and dextral faults explains the 

kinematic origin of the dextral faults in the eastern Central Walker Lane, it does not 

explain the variable fault slip rates through time along the Petrified Spring fault nor the 

difference in present-day slip rates along the Benton Spring fault of 1.5 ± 0.2 mm/yr 

(Bormann et al., 2016; Angster et al., 2019) vs. the minimum 0.3 ± 0.2 mm/yr slip rate 

since the Middle Miocene (this study). Miocene slip rates are significantly less than 

Pleistocene and present-day slip rates along both of these faults (e.g. Lee et al., 2020b). 

An examination of the subduction of the fragments of the Farallon Plate resulting in the 

lengthening of the Pacific-North American plate boundary, along with the accompanying 

transition from a subduction to a transform plate boundary, offers a potential explanation 

for the variable strain rates through time along the dextral faults of the eastern Central 

Walker Lane (Lee et al., 2020b). The Mendocino Triple Junction marks the point where 

the plate boundary transitions from subduction to a transform boundary, and the high-
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resolution plate boundary reconstructions of DeMets and Merkouriev (2016) indicate that 

the Mendocino Triple Junction reached the latitude of the field area in the early Pliocene. 

The slower slip rates along the Benton Spring and Petrified Spring faults thus occurred 

while the plate boundary at the latitude of the field area was a subduction boundary, the 

Farallon plate subducting westward beneath the North American plate. The faster rates 

reported for the Pleistocene and the present-day occurred while the plate boundary was a 

transform boundary, the Pacific plate moving northwestward relative to the North 

American plate (e.g. Atwater, 1972; Bormann et al., 2016; Lee et al., 2020b; this study). 

As such, while the dextral faults of the eastern Central Walker Lane likely developed to 

accommodate the different directions of extension in the northern Eastern California 

Shear Zone and the western Basin and Range, modern slip along the faults is driven by 

the strain associated with the Pacific-North American plate margin (e.g. Dixon et al., 

1995; Bennett et al., 2003; Faulds and Henry, 2008; Lee et al., 2009; Delano et al., 2019; 

Lee et al., 2020b).  The dextral faults of the eastern Central Walker Lane are oriented 

subparallel to the direction of motion associated with the plate boundary, as represented 

by the azimuth of motion of the Sierra Nevada block relative to the Central Great Basin 

(Lee et al., 2020b) (Figure 12). This similarity in orientation likely drives the increased 

slip rates in the eastern Central Walker Lane in the Pleistocene and present-day, as the 

faults of this region are more ideally oriented to accommodate the strain of the plate 

boundary slip.  
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CHAPTER VII 

CONCLUSIONS 

 My new geologic mapping, geochronology, and structural studies document the 

pre-Quaternary Cenozoic surface expression and dextral slip history along the Benton 

Spring fault, Gabbs Valley Range, providing context for the spatial-temporal evolution of 

the major dextral faults of the eastern Central Walker Lane. This study documented tuff- 

and lava-filled paleovalleys incised into Mesozoic bedrock and other Oligocene and 

Miocene volcanic units in the Gabbs Valley Range, ages for six of the infilling tuffs and 

lavas, and the dextral offset magnitudes for five paleovalley markers. Utilizing the offset 

paleovalley walls observed in the Gabbs Valley Range and the ages calculated for the 

infilling units, I was able to constrain the maximum age of initiation of dextral slip along 

the Benton Spring fault. The five markers yield an average dextral offset of 6.9 ± 1.5 km 

across the Benton Spring fault. The maximum age for initiation of fault slip is 20.14 ± 

0.26 Ma, the age of the youngest dextrally offset marker. Combining the average dextral 

offset yields a minimum dextral slip rate of 0.3 ± 0.1 mm/yr since early Miocene. As the 

Benton Spring fault shares a similar azimuth, magnitude of dextral offset, and calculated 

slip rate since the Middle Miocene with the Petrified Spring fault, Agai Pah Hills fault, 

and the Gumdrop Hills fault, the eastern Central Walker Lane can be confidently said to 

share a closely linked fault slip history. A Middle Miocene initiation of slip along the 

Benton Spring fault links the forces which drove slip along this fault in the eastern 

Central Walker Lane with the forces driving normal faulting throughout the Sierra 

Nevada and the western Basin and Range. The closely-linked slip histories and apparent 
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Pliocene increase in slip rate across the dextral faults in the eastern Central Walker Lane 

indicate that the plate boundary transition from a subduction boundary to a transform 

boundary caused the slip rate for the Benton Spring fault to vary through time. 
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APPENDIXES 

APPENDIX D 

AGE SUMMARIES 

Following the methods outlined in the 40Ar/39Ar section of Chapter III, geochronology 

samples were analyzed and the resulting age data is included in this Appendix. Six 

samples were dated using 40Ar/39Ar incremental heating techniques or a continuous CO2 

laser system; the age data for each sample is comprised of either the age spectrum and 

isochron or the weighted mean age and isochron. Each age spectrum and isochron data 

set is comprised of a Cl/K ratio plot, a percent radiogenic material plot, a K/Ca ratio plot, 

and an apparent age in Ma plot based on cumulative 39Ar released.  Weighted mean age 

and isochron data sets are comprised of a %radiogenic material plot, K/Ca ratio plot, 

moles of 39K plot, and cumulative probability function plot. Ages for each method are 

included in the plot for that method. Each of the samples in Table 2 was collected in the 

Gabbs Valley Range; sample locations are included in Plate 1. 
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Figure D1. Weighted
Mean and Isochron
40Ar/39Ar age data for
sanidine from Miocene
unit Mmi, a mafic dike.
Age data is comprised o
%Rad plot, K/Ca plot, m
39K plot, Cumulative
Probability plot, and
40Ar/36Ar vs 39Ar/36Ar plot.
Summary of ages is
shown in Table 2.
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Figure D2. Weighted
Mean and Isochron
40Ar/39Ar age data for
sanidine from Miocene
unit Mrc, a rhyodacitic
tuff. Age data is co -
prised of %Rad plot, K/C
plot, mol39K plot, cumu-
lative probability plot,
and40Ar/36Ar vs 39Ar/36Ar
plot. Summary of ages i
shown in Table 2.



74 
 

  

Figure D3. Age Spectrum
and Isochron40Ar/39Ar
age data for plagioclase
from Miocene unit Ola,
an andesite lava. Age
data is comprised of Cl/K
plot, %Radiogenic mate-
rial plot, K/Ca plot, and
apparent age plot, based
on cumulative39Ar
released. Summary of
ages is shown in Table 2

Ola
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Figure D4. Weighted
Mean and Isochron
40Ar/39Ar age data for
anorthoclase from Mio-
cene unit Mql, a quartz
latite lava. Age data is
comprised of K/Cl plot,
%Rad plot, K/Ca plot, m
39K plot, and cumulative
probability plot. Summa-
ry of ages is shown in
Table 2.
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Figure D5. Age Spectrum
and Isochron40Ar/39Ar
age data for plagioclase
from Miocene unit Oal,
an andesite lava. Age
data is comprised of Cl/
plot, %radiogenic mater-
al plot, K/Ca plot, and
apparent age plot based
on cumulative39Ar
released. Summary of
ages is shown in Table 

(unit Oal)
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Figure D6. Weighted
Mean and Isochron
40Ar/39Ar age data for
anorthoclase from Mio-
cene unit Mrl, a rhyolite
lava. Age data is com-
prised of %rad plot, K/Ca
plot, mol39K plot, and
cumulative probability
plot. Summary of ages is
shown in Table 2.
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