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ABSTRACT 

COMPARING SEMI-URBAN AND FOREST  

POPULATIONS OF THE JALISCO MUD TURTLE  

(KINOSTERNON CHIMALHUACA) 

by 

José Reynaldo Garrido 

March 2021 

 

Mud turtles (family Kinosternidae) are primarily threatened by climate change, 

overexploitation, and land development. To survive in increasingly urbanized and arid regions, 

mud turtles often inhabit man-made water sources such as cattle troughs and irrigation ditches. 

These bodies of water are critical in urban habitat where they may offer some of the last 

remaining refugia; however, the effect of these conditions on population structure is poorly 

understood. The Jalisco mud turtle (Kinosternon chimalhuaca) was described in 1997 from a 

small range south of Puerto Vallarta, Mexico. Since its description, critical ecological research 

has remained largely nonexistent, hindering effective conservation and management. Recent 

satellite imagery surrounding our study sites in have shown the loss of lowland deciduous forest 

and an increase in human activity through deforestation and fragmentation with a dramatic 

increase in population and tourism. Our research reports the first comparative analysis of K. 

chimalhuaca’s populations from a pristine forested arroyo habitat in the Chamela-Cuixmala 

Biosphere Reserve, and a semi-urban habitat in a nearby small town. In July and December of 

2019, our team surveyed a small ~1km irrigation ditch in the middle of town and astonishingly 

captured, marked and measured 226 turtles, estimating a population of 741 ± 132 individuals. 

Similar trapping effort in the forest habitat surrounding the Chamela field station yielded 12 

turtles, added to a collection of 25 prior opportunistic captures. In town, turtles exhibited a 
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female-biased ratio (1:2.16; 68% female; N = 174), contrasting the male-biased forest population 

(2.63:1; 28% female; N = 29). The carapace length (CL) of forest males were more bimodally 

distributed and significantly larger (p = 0.036) than their semi-urban counterparts. Forest females 

were also significantly larger than female turtles from the town (p = 0.012). The findings of this 

preliminary dataset warrant further investigation into the driving factors supporting abundant 

semi-urban populations and the effects of human-turtle interactions in the face of global turtle 

declines. 
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CHAPTER I 

GENERAL INTRODUCTION 
 

 

Turtles are considered the world’s most endangered vertebrates, threatening 61% species 

with extinction in this century (TTWG 2017). Mud turtles (family Kinosternidae) living in arid 

regions face a particularly high risk from mounting pressures of climate change, land 

development and overexploitation (Butler et al. 2016). The decline of kinosternids is a serious 

detriment to terrestrial and aquatic ecosystems where they perform significant ecological roles in 

insect control, soil bioturbation, and seed dispersion (Lovich et al. 2018). However, the 

conservation and management of several kinosternids in Mexico are significantly hindered by a 

lack of records and ecological research (Legler & Vogt 2013). While human populations 

continue to grow exponentially, few studies examine how land development effects mud turtle 

population structure. Investigating how turtle populations respond to urbanization requires 

demographic data from varied and novel habitats and should be a top priority for informing 

conservation measures and combating future extinctions.   

Land development and habitat loss are some of the most significant local factors in mud 

turtle declines (Butler et al. 2016; Stanford et al. 2020). Since 1980, the human population of 

Puerto Vallarta has increased from 65,000 to over half a million, not including the four million 

tourists who visit the city every year (UN 2019). This sharp rise in human population and land 

development has resulted in enormous biodiversity losses throughout the region, with effects 

radiating into our study site at the Chamela-Cuixmala Biosphere Reserve (140 km south) 

(Flores-Casas & Ortega-Huerta 2019). This is a devastating loss for the region, as the 

surrounding neotropical dry forest biome is Earth’s most endangered tropical ecosystem and 
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internationally recognized for high endemism and species richness (Janzen 1988; Ceballos & 

Garcia 1995). Recent satellite imagery surrounding our study sites has shown the loss of lowland 

deciduous forest and an increase in human activity from land development, fragmentation and 

the rise in population and tourism radiating from cities like Puerto Vallarta (Bautista & López-

Caloca 2009; 2011). Although eight of the 16 Mexican Kinosternon species inhabit the Pacific 

coastal plains, many areas still have no published records of freshwater turtles due to a lack of 

exploration and recorded local knowledge (Legler & Vogt 2013; TTGW 2017; Lopez-Luna 

2018). In this region, three new Kinosternon species have been recently described including K. 

chimalhuaca (Berry et al. 1997), K. vogti (Lopez-Luna et al. 2018), and K. cora (Loc-Barragan 

2020) — all threatened by the growing pressures associated with their proximity to human 

development. Since K. vogti was discovered in the urban drainages around Puerto Vallarta, it has 

never been recorded in a natural habitat. Mud turtles rely on man-made water sources such as 

cattle troughs and irrigation ditches to survive in the increasingly urbanized and arid regions they 

inhabit (Carr 1952). These bodies of water are critical in urban landscapes where they may offer 

some of the last remaining refugia. Although poorly studied, these conditions can have either a 

positive or negative influence on turtle populations across taxa (Spinks et al. 2003; Rizkalla & 

Swihart 2006; Elston et al. 2014; Ryan et al. 2014; French et al. 2018). Mud turtles exhibit 

impressive behavioral and physiological plasticity, but many ecologists agree that such resilience 

may only delay, and not prevent, local extinctions (Schlesinger et al. 1990; Butler et al. 2016).  

Human development plays a significant role in local turtle declines; however, the 

widespread effects of climate change endangers populations internationally. While most animals 

are threatened by rising global temperatures, the effect on mud turtles can be seen and predicted 

directly. This is because, like many turtles, kinosternids exhibit temperature-dependent sex 
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determination (TSD), meaning hatchling sex is determined in the egg by its surrounding 

temperature (Vogt & Bull 1982). Sex determination outcomes vary among taxa, but in all mud 

turtles, eggs incubated at warmer temperatures (during the middle-third stage of incubation) 

produce exclusively female offspring, and >34˚C often result in mortality. Models have predicted 

that climate change has the potential to heavily skew sex ratios in the next 30 to 50 years with 

temperature increases of <2˚C (Janzen 1994). Furthermore, an increase of ≥4˚C (predicted within 

this century) could lead to entirely female offspring and mass nest mortality. Three traits exist by 

which turtles may adapt to thermal changes: nest-choice, nesting phenology, and altering their 

pivotal temperature (Tpiv), or the temperature at which sex ratios are 1:1 (Valenzuela & Lance 

2004). Mud turtles in Mexico often travel <150 m to nesting and estivation sites, limiting the 

thermal availability of nest-site choice as a method of adaptation (Morales-Vereja & Vogt 1997; 

Pérez-Pérez 2017; Montiel-Ugalde 2018). Kinosternids in the seasonally dry forests reproduce 

during the short rainy season (July-September), limiting adaptation through nesting period 

phenology and behavior change. Geographical shifts in the Tpiv have been recorded in some 

turtle species (this has not been established in kinosternids); however, most biologists agree that 

the rate of projected environmental changes will likely surpass the limits of turtles’ biological 

adaptability (Valenzuela & Lance 2004; Butler 2016). Furthermore, aquatic habitats near human 

development often experience increased local temperatures through urban heat island effect 

which increases the rate of seasonal evaporation, diminishes water quality, and reduces aquatic 

biodiversity (Manley 1958; Johnson 2013). With limited methods for adapting to a rapidly 

changing environment, studying the effects of climate change and urbanization on mud turtle 

populations are critical to inform conservation measures and prevent future extinctions. 
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The Jalisco mud turtle (K. chimalhuaca) was described in 1997 in a small range south of 

Puerto Vallarta, having been previously mistaken for the widespread Mexican mud turtle (K. 

integrum). Since its description, critical ecological research from its full range of occupied 

habitats have remained largely nonexistent, limiting comprehensive conservation assessments 

and management plans. My research reports the first comparative analysis of K. chimalhuaca’s 

populations from two unstudied habitats: a pristine forest arroyo and a semi-urban ditch. I 

explored the effects of urbanization by sampling turtles from a semi-urban site in a perennial, 

man-made canal predominantly exposed and bordered by concrete, gravel, and grasses. In 

contrast, the forest habitat we sampled is characterized by a network of ephemeral arroyos with 

some flowing, shallow pools and shaded by a dense canopy in the Chamela-Cuixmala Biosphere 

Reserve. I predicted that we would find significant differences in population structure 

(abundance, sex ratio, body size, and body size distribution) between semi-urban and forest 

habitats. Comparing turtles from novel and contrasting habitats provides insight into the effects 

of urbanization and will help develop strategies to maintain the health and biological integrity of 

mud turtle populations in the face of declines by human-caused habitat alteration. 
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CHAPTER II 

LITERATURE REVIEW 
 

More than half (55%) of the world’s human population now lives in urban areas (UN 

2020). This number is expected to increase to 68% by 2050 in combination with a population 

increase of up to 2.5 billion people, totaling over 10 billion. This proportion is even higher in 

North and Central America where over 80% of the population lives in urbanized areas. Although 

some argue that human migration to cities removes pressure from natural ecosystems, population 

growth necessitates continuous resources, development, and expansion of urban areas (Shen 

2005; French 2018). This poses a growing threat to maintaining biological diversity in sensitive 

and endangered natural ecosystems. Responses to fragmentation and urbanization have shown 

mixed effects in several vertebrate taxa, often negatively impacting native and specialist species, 

but sometimes favoring generalist and invasive species (Fahrig 2003; Rodda & Tyrell 2008). In 

reptiles, the outcomes of urbanization are typically harmful; they include, decreased abundance, 

species richness, gene flow, and survivorship (Henderson et al. 2009; Banville & Bateman 2012; 

Hunt et al. 2013; Beninde et al. 2016; Sullivan et al. 2017). However, in the metropolitan area of 

Charlotte, North Carolina different species of semi-aquatic turtles show mixed survivorship 

(Eskew et al. 2010). Yellowbelly sliders (Trachemys scripta) and common snapping turtles 

(Chelydra serpentina) show high survivorship (73–92.5% and 91.4–99.4%, respectively), 

whereas eastern mud turtles (Kinosternon subrubrum) show uncharacteristically low 

survivorship (58.6–73.6%). Urban land development will continue to adversely affect turtle 

biodiversity in most ecosystems. But with a broad range of responses, evaluating which species 

and populations are at highest risk is essential for determining the most effective management 

and conservation strategies.  
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Urban water sources can be critical refugia for turtles in developed habitats, but the 

impacts on populations structure are complex and vary according to life history, habitat 

complexity, and stability. Two important characteristics associated with increases in turtle 

abundance are regional drought intensity and proportions of females (for turtles with TSD), both 

of which are positively correlated with urbanization and climate change (Leng et al. 2015; 

Valenzuela et al. 2019). For semi-aquatic turtles who only estivate during the driest years, such 

as painted turtles (Chrysemys picta), perennial urban water sources may not always pose a 

significant advantage for overall survivorship (Bowne 2008). Man-made aquatic habitats can 

drastically reduce abundance in some populations of C. picta (Minton 1968), whereas similar 

conditions cause other populations to increase or remain stable (Rizkalla 2006). Bowne et al. 

(2018) found that across 11 states, there was a significant positive relationship between 

urbanization and proportions of mature female painted turtles, which may be caused by limited 

thermal refuge and urban heat island effects. Habitat stability also plays an important role in 

turtle populations, although some species appear resilient to periodic disturbance in man-made 

habitats (Paul & Meyer 2001; Roe et al. 2011; Plummer et al. 2008). In an urban population of 

softshell turtles (Apalone spinifera), individuals emigrated downstream during periods of habitat 

disturbance, and quickly recolonize after stabilization, with insignificant decreases in survival 

rates (Plummer & Mills 2008).  

The vast majority of publications regarding urbanization focus on presence or abundance 

and seldom examine turtles’ specific response to common urban habitat characteristics such as 

limited thermal refuge, altered resource availability, and diminished water quality (French 2018). 

Future investigations would have greater significance by narrowing the scope of research on 

urban habitats to investigate the specific drivers of a population-level response. Anthropogenic 
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contamination of waterways can be documented in remote areas far from human development or 

decades after disturbance events. This has the potential of exposing even protected turtle 

populations to a wide variety of long-term health effects. In three federally protected California 

habitats, 57 pesticides were detected in western pond turtle (Emys marmorata) populations found 

locally from historic mines and downwind from urban and agricultural areas (Meyer et al. 2016). 

In a contaminated Virginia river, high mercury levels were detected in four turtle species (P. 

rubriventris, C. picta, S. odoratus, and C. serpentina) depending on diet preference (Bergeron et 

al (2007). High mercury levels have been linked to reduced hatchling success and altered 

behavior in snapping turtles (Hopkins et al. 2013). Failey et al. (2007) also determined that semi-

aquatic turtles inhabiting golf course ponds had significant delays in reaching sexual maturity. 

Studies that focus on deciphering the various population-level effects posed by specific habitat 

conditions and contaminants could play an important role in determining the health and integrity 

of semi-aquatic turtle populations.    

Research has rarely investigated the effects of perennial urban aquatic habitats on turtles 

in arid regions who estivate during long periods of drought. In one study, Roe et al. (2011) 

documented that eastern long-necked turtles (C. longicollis) flourished in suburban perennial 

ponds, documenting three times more abundance, five times faster growth rates, a female-

skewed sex ratio, and similar survivorship compared to wild populations from ephemeral 

wetlands. Suburban C. longicollis were benefitted by foregoing the long-term estivation typically 

essential to survive the long dry season in naturally ephemeral water sources. Conversely, among 

several populations of Sonoran mud turtles (Kinosternon sonoriense), density was significantly 

higher in intermittent water sources, although permanent water bodies boasted significantly 

larger body sizes (Stanila 2009). Permanent and intermittent aquatic habitats supported both 
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male-biased and female-biased populations, but habitat structure was the main driver of 

abundance and density. Further demographic research should be conducted from various habitat 

structures to investigate the response of population densities from sex ratios in combination with 

habitat structure.  

Turtles with TSD may experience higher abundance in response to increased 

temperatures, but this does not necessarily reflect the health or stability of the population. A 

generalized model predicted that along a thermal gradient, TSD can independently cause female-

skew turtle populations to result in peak turtle abundances; but population size drastically 

decreases when warmer temperatures create male-limited populations or high egg mortality 

(Boyle et al. 2014). However, the population-level effects of TSD are rarely independent, and 

often conflated with other factors that significantly drive abundance such as habitat structure and 

resource availability. Nonetheless, reporting population sex ratios, and their changes over time, 

may signal a persisting response to local temperature changes, and help predict a local 

population crash from male-limiting feminization. Consideration of how local sex ratios and 

habitat structure may drastically skew abundance is especially important when using these 

populations to infer the conservation status of rare, unstudied, and new species with limited 

records. In the initial description and type locality of the Jalisco mud turtle (Kinosternon 

chimalhuaca), a dense population of 81 turtles are reported living in “a clear pond located 30 m 

southeast of Mexico Highway 80” and from two other exposed pools along the highway (Berry 

et al. 1997). Although sex ratios were not reported, Berry et al.’s other analyses suggest these 

populations were heavily female-skewed. Being the only published record of K. chimalhuaca 

populations, this was only demographic reference used to establish the conservation status of K. 

chimalhuaca as “least concern” (IUCN 2007). However, depending on the effects of perennial 
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water sources on the resource availability, and local temperature or exposure on the sex ratios in 

these populations, Berry et al.’s recorded abundance may represent an overestimate of typical 

population size when compared to forest populations living in the densely covered ephemeral 

arroyos (which represent a large portion of its range). This does not suggest the conservation 

status is necessarily inaccurate, but it could be enhanced by including sex ratios and abundance 

data from other habitat types to represent the full range of occupied habitats. Characterizing the 

relative densities in various habitat types across K. chimalhuaca’s range, and the factors most 

prominently influencing population density, will lead to more comprehensive estimates of 

population health and better inform future conservation and management strategies. 
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CHAPTER III 

JOURNAL ARTICLE 
 

Comparing Semi-urban and Forest Populations of the Jalisco Mud 

Turtle (Kinosternon chimalhuaca)  
José R. Garrido1*, Taggert Butterfield2, Alison G. Scoville1, Rodrigo Macip-Ríos2, Daniel D. Beck1 

1. Department of Biological Sciences, Central Washington University, 400 E. University Ave, Ellensburg, WA 98926, USA 

2. Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a 

Pátzcuaro 8701, Morelia, Michoacán 58341, México 

*Corresponding author; email: josereygarrido@gmail.com 

Mud turtles (family Kinosternidae) are primarily threatened by climate change, 

overexploitation, and land development (Butler et al. 2016). To survive in increasingly urbanized 

and arid regions, mud turtles often inhabit man-made water sources such as cattle troughs and 

irrigation ditches (López-Luna et al. 2018). These bodies of water are critical in urban habitats 

where they may offer some of the last remaining refugia. Although poorly studied, these 

conditions can have either a positive or negative influence on turtle abundance across taxa 

(Spinks et al. 2003; Elston et al. 2014). Mud turtles exhibit impressive behavioral and 

physiological plasticity, but many ecologists agree that such resilience may only delay, and not 

prevent, local extinctions (Schlesinger et al. 1990).  

Our research reports the first comparative demographic analysis of two Jalisco mud turtle 

(Kinosternon chimalhuaca) populations: one from a small town’s central irrigation ditch, and 

another from a nearby pristine neotropical deciduous forest arroyo. Since the initial description 

of K. chimalhuaca over twenty years ago (Berry et al. 1997), critical ecological research has 

remained largely nonexistent while human pressures continue to grow. At the northern extent of 

K. chimalhuaca’s small range, the human population of Puerto Vallarta, Mexico has increased 

from 65,000 to over half a million since 1980, not including the four million tourists who visit 
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the city each year (UN 2019). Satellite images of our nearby study sites shows fragmentation, a 

loss of lowland deciduous forest, and an increase in human activity caused by the sharp rise in 

population and tourism radiating from nearby cities like Puerto Vallarta (Bautista and López-

Caloca 2009). We explore the effects of urbanization by sampling turtles from a semi-urban site 

in a perennial, man-made canal predominantly bordered by concrete, gravel, and grasses. The 

canal is generally exposed, except for under sparse vegetation and in sections flowing under the 

town’s streets (Fig. 1). In contrast, the forest habitat we sampled is characterized by a network of 

ephemeral arroyos with many shallow pools and shaded by a dense canopy in the Chamela-

Cuixmala Biosphere Reserve (19.4984°N, -105.0443°W) (Fig. 1). We predicted that we would 

find significant differences in K. chimalhuaca population structure (abundance, sex ratio, mean 

body size, and size class distribution) between the semi-urban and forested habitats. Comparing 

turtles from such contrasting habitats may provide insight into the effects of urbanization and for 

developing strategies to maintain the health and biological integrity of mud turtle populations in 

the face of human-caused habitat alteration.   

 

Methods.— From 2015–2018 we opportunistically captured and measured K. chimalhuaca in 

several arroyos of the Chamela Forest, before conducting targeted trapping at both the town and 

forest site in 2019. Although K. chimalhuaca is the only freshwater turtle species present in the 

region, identification was confirmed by the presence of a reduced plastron and contact of the 

auxiliary and inguinal scutes (Berry et al. 1997). We sampled turtles from both populations 

during the night using partially submerged hoop-nets baited with punctured tuna or sardine cans 

(Moll and Legler 1971). In the Chamela Forest, trapping efforts comprised four traps set for two 

nights during both July and December of 2019, totaling 16 trap nights. In town, during both July 
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and December 2019, two traps were set the first night followed by four traps the next night for a 

total of 12 trap nights. During each capture, sex and weight were recorded before measuring 

straight-line carapace length (CL), straight-line carapace width (CW), plastron length (PL), 

plastron width (PW), and shell height (SH) with digital calipers to the nearest 0.1 millimeters 

(Carr 1952). We confidently identified sex only in turtles typically >90 mm; thus, only they were 

included in our analyses. Turtles were given individual identification numbers using a modified 

marginal scute notch numbering system (Cagle 1939).  

We used the statistical computing environment R 4.0.2 (R Core Team 2020) to test for 

differences in K. chimalhuaca population characteristics between the two habitats. The Rcapture 

1.4-3 package was implemented to calculate our population abundance estimates and reported 

with standard error (Rivest and Baillargeon 2019). The differences in adult sex ratios were 

calculated in a Chi-squared test with an alpha of 0.05. To test for normality in body size 

distribution we used a Shapiro-Wilks test. To transform our unbalanced and nonparametric data, 

measurements were processed using an aligned rank transformation in the ARTool 0.10.7 

package and compared using a two-way factorial ANOVA with an alpha of 0.05 (Kay and 

Wobbrock 2020). The use of an ANOVA allowed us to test for interactions, and examine the 

main effect of site without the effect of sex ratios to bias each populations’ mean body size. 

Measurement values were averaged in our analyses for turtles who were captured more than 

once.  
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FIG. 1. An arroyo sampled in the forest habitat from the Chamela-Cuixmala Biosphere Reserve 

(left) and the exposed semi-urban habitat sampled from the nearby town’s central irrigation canal 

(right).  

 

Results; Abundance.— In four years of mixed sampling effort in the Chamela Forest, we marked 

a total of 37 turtles, with four recaptures. Forest trapping efforts from 16 trap nights in July and 

December 2019 yielded 12 turtles, while the remaining 25 captures were opportunistically 

encountered from 2015–2018. Recapture data in the forest were not sufficient to calculate a 

precise population estimate. In a 400 m reach of the town ditch, 12 trap nights from July and 

December 2019 yielded 224 captures of 206 individuals. During two nights of sampling in July, 

44 turtles were captured in the first night and 94 the second night with five recaptures. In two 

nights of trapping in December, the first night yielded 28 turtles with nine recaptured from July. 

The second night yielded 68 turtles with six additional recaptures from July and no recaptures 

from the previous night. No turtle was captured more than twice during the entire sample period. 
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A total of 17 recaptures among all sampling events estimates 741 ± 132 turtles occupy the ditch 

in town.  

Sex Ratios.— Sex ratios differed significantly between forest and the town populations. In town, 

turtles exhibited a female-biased sex ratio (1:2.16; 68% female; N = 174) that significantly 

different from an expected 1:1 sex ratio (2 = 12.18; P < 0.0005). This contrasted the male-

biased sex ratios in the forest (2.63:1; 28% female; N = 29) which also differed significantly 

from a 1:1 sex ratio (2 = 5.83; P < 0.016) (FIG. 2).  

  

 FIG. 2. Frequency of male and female K. chimalhuaca from a semi-urban and forest habitat. 

 

Size.—The mean CL of male turtles from the Chamela Forest (x̅ = 132.2; SE = 4.3; N = 23) was 

larger than males from the town (x̅ = 123.5; SE = 2.1; N = 63). (TABLE 1; FIG. 3). Forest females 

(x̅ = 120.0; SE = 4.1, N = 9) were also, on average, larger than semi-urban females (x̅ = 113.5; 
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SE = 0.8, N = 134) (TABLE 1; FIG. 3). The larger size of forest turtles was statistically significant 

for both males (t = 2.719; df = 209; P = 0.036) and females (t = 3.100; df = 209; P = 0.011) in a 

post-hoc comparison of a two-way factorial ANOVA. Sexual dimorphism was confirmed where 

males were significantly larger than females in both populations (F = 36.9 ; df = 209; P < 

0.00001; Table 1). No interaction between site and sex were detected (F = 0.012; df = 209; P = 

0.91). Body size class distributions of forest turtles differed significantly from a normal 

distribution in both males (W = 0.87; N = 26; P = 0.006) and females (W = 0.78; N = 10; P = 

0.01; FIG. 3) in a Shapiro-Wilks test. In contrast, turtles in town showed size class distributions 

that conform to normality for both males (W = 1; N = 64; P = 0.97) and females (W = 0.98; N = 

134; P = 0.53; FIG. 3). 

TABLE 1. Weight (g) and measurement (mm) averages with standard error reported for each sex 

and population with straight-line carapace length (CL), straight-line carapace width (CW), 

plastron length (PL), plastron width (PW), and shell height (SH).  

 N Weight CL CW PL PW SH 

Forest Male 23 296 ± 29 132.2 ± 4.3 83.1 ± 2.2 101.6 ± 2.7 64.7 ±1.5 44.4 ± 1.7 

Forest Female 9 251 ± 25 120.0 ± 4.1 81.5 ± 2.9 101.7 ± 3.9 63.5 ± 2.6 44.1 ± 2.1 

Semi-urban Male 63 254 ± 11 123.5 ± 2.1 78.4 ± 1.1 97.9 ± 1.3 64.2 ± 0.8 41.7 ± 0.7 

Semi-urban Female 134 225 ± 5 113.5 ± 0.8 75.9 ± 0.5 97.1 ± 0.6 63.6 ± 0.4 42.1 ± 0.4 

 

Some forest males were substantially larger than other adults (FIGS. 3 and 4); these larger 

individuals ranged from 153.3–177.6 CL (x̅ = 162.5; σx̅ = 2.9, N = 6) compared to the more 

abundant group of smaller wild males (CL < 131.5) (x̅ = 122.8; σx̅ = 1.8, N = 18). The CL of the 

largest forest male (580 g, CL = 170, PL = 128, PW = 79, MW = 100, SH = 57) exceed the 

previously recorded maximum CL for males of 157 mm (Berry et al 1997). However, the largest 

individual females came from the town site, with the largest female (334 g, CL = 140, PL = 108, 

PW = 72, MW = 88, SH = 48) exceeding the previously reported maximum CL of 127 (Berry et 

al. 1997). 
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FIG. 3. Size class distribution of males (blue), females (pink), and unsexed juveniles (grey) from 

semi-urban and forest habitats at first capture. X-axis values are at the upper limits of each 10 

mm bin. 

 

  

FIG. 4. Two typical adult males from the Chamela Forest demonstrating the differences between 

small (above) and large males (below).  
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Discussion.— Jalisco mud turtles in town had a much greater population density than those in 

the forest. Although the town ditch is less than a kilometer in length, the highest density of 

turtles was concentrated in deeper water (>1 m) and closest to the town’s center. Nutrient loading 

from communal greywater drains in town may feed turtles directly, or act to support and 

concentrate food resources such as the abundant populations of Poecilia fish we observed — a 

high-calorie food source for opportunistically carnivorous mud turtles. Moreover, the perennial 

irrigation ditch in town allows turtles to benefit from potentially year-round resource availability 

and either delay or entirely avoid estivation. In contrast, mud turtles from the forest leave their 

ephemeral arroyos during the dry season and spend the next several months underground in a 

period of estivation until the summer rains return. These differences in habitat structure and food 

resources are likely what is driving differences in population size between forest and semi-urban 

populations. Both forest and town habitats in our study differ from the nearby type locality of K. 

chimalhuaca: “…a clear pond located 30 m southeast of Mexico Highway 80.” Here, Berry et al. 

(1997) recorded a dense population of mud turtles in an exposed one-acre pond, capturing 81 

individuals in ten hours of trapping. This supports the notion that population dynamics for K. 

chimalhuaca are highly variable and tied to habitat features.  

 Mud turtles in the forest showed a strongly male-biased sex ratio, whereas turtles in town 

showed the opposite pattern — with females outnumbering males two to one. This difference 

may be a result of the limited forest sample size, or due to the effect of temperature-dependent 

sex determination (TSD) during incubation. In kinosternid turtles, eggs incubated at high 

temperatures produce almost entirely female offspring, whereas the sex of turtles incubated at 

lower temperatures depends on each species’ fixed expression pattern (TSD Ia or II) (Vogt and 

Flores-Villela 1992; Butler et al. 2016). The expression of TSD in Kinosternidae is highly 
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variable and has not been explicitly reported for K. chimalhuaca. However, its sister neotropical 

species (K. hirtipes and K. sonoriense) exhibit highly polarized patterns of TSD Ia with a narrow 

transitional range of temperature (TRT) near ~29°C, with lower temperatures producing 

exclusively males (Ewert et al. 2004; Iverson et al. 2013, Pereira et al. 2017). This suggests that 

the male-biased sex ratios of the forest population may result from cooler nesting temperatures 

influenced by a denser canopy cover surrounding the arroyos. In contrast, the female-biased sex 

ratio in town suggests that exposed conditions (Janzen 1994) or urban heat island effect (Manley 

1958, Bowne et al. 2018) may be responsible for increased nesting temperatures and, in turn, a 

greater proportion of females; however, sex-biases in mortality were not addressed. Although a 

female-skewed population potentially increase abundance, the growing population must also be 

without male-limitation and supported by sufficient resources and habitat structure (Stanila 2009; 

Boyle et al. 2014). More research is needed on K. chimalhuaca’s specific TRT and the thermal 

landscape to fully explain hatching sex ratios and provide a more complete understanding of how 

human-modified habitats may influence turtle populations with TSD.  

 The population size structures, as represented by body size class distributions, differed 

significantly between turtles from the forest and the town (FIG. 3). Mean body size of both males 

and females were larger in the forest than in town. Forest males also had a broader distribution of 

body sizes, while the female sample was not sufficient to confidently assess body size-class 

distribution. Forest males were bimodally-divided, forming distinct large and small groups with 

nearly all “large” males exceeding the previously recorded maximum CL for the species (FIG. 4; 

Berry et al. 1997). The presence of these large males is largely responsible for the size difference 

we observed between semi-urban and forest males. As with population size (above), differences 

in mud turtle population structure between semi-urban and forest populations are likely a result 



19 
 

of differences in habitat structure and resource availability. The forested habitat is more shaded 

by the tree canopy and water availability is more strongly influenced by the dry season. The 

semi-urban habitat, on the other hand, presents more consistent water resources in the form of 

the town ditch, and potentially higher environmental temperatures from lower vegetation cover 

or heat island effect, which may affect sex ratios. Differences in mean body size may be 

attributed to differences in survivorship or growth curves, where habitats that support older or 

larger turtles may positively skew mean body size. These factors (and others) likely combine to 

create the differences we observed in Kinosternon chimalhuaca population structure between 

forested and semi-urban habitats. Additional surveys from Chamela and other forest populations, 

along with replicates from additional semi-urban populations, are needed to determine whether 

our observations are part of a general pattern whereby semi-urban mud turtle populations 

maintain high population densities and show sex ratios skewed in favor of females.  

 Understanding how the structure of turtle populations varies among habitat types, and 

especially how human altered habitats may influence rare and threatened turtle populations, is 

critical in the face of global turtle declines. Since its description in 1997, ecological research on 

K. chimalhuaca has remained largely nonexistent and has certainly not been conducted within its 

full range of occupied habitats (Berry et al. 1997). The turtles in this study were surveyed as part 

of a preliminary investigation and although the differences between populations are 

demonstrable, additional sampling from other areas is needed. The relevance of our study would 

be greatly increased through replication with other turtle species, as well as the inclusion of more 

diverse and outlying habitats. We enlisted community members to help us trap, mark and 

measure our semi-urban turtle population. As partners in the study, the townspeople became 

eager to learn more about and protect their resident turtles. In a rapidly urbanizing region, such 
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buy-in from local stakeholders is crucial to developing greater awareness and appreciation, as 

well as helping to ensure the continued conservation of this endemic species. Community 

outreach also provides a valuable opportunity to build conservation partnerships that can 

determine the success of long-term prospects for maintaining viable populations for species in 

peril. We hope our discoveries will inform a broader understanding of the effect of semi-urban 

habitats on turtle populations and also underscore the importance of involving community 

stakeholders as partners in meeting conservation objectives.  

 

Acknowledgments.— We thank the Estación de Biología Chamela and town residents for their 

logistical support, housing, and access to study sites, as well as Nicholas DeHollander and 

students from CWU’s SOBRE Mexico Program and local students for their field assistance in 

processing turtles. Central Washington University’s Institutional Animal Care and Use 

Committee approved field techniques for this research (protocol #2020-037). This study was 

made possible through a collaboration between Central Washington University and Universidad 

Nacional Autónoma de México with funding from Central Washington University and the 

Washington State Distinguished Fellowship Award to JRG, and NSF award 1559447 (IRES 

SOBRE Mexico) to DDB. Permits (SGPA/DGVS/01156/19 and FAUT-0304) were issued by 

SEMARNAT to RMR.  

  

 

 

 

 

 

 



21 
 

CHAPTER IV 

CONCLUSION 
 

 I used population density, sex ratios, and class size distribution, and size distribution as 

metrics to compare the effects of urbanization on the population structure of Jalisco mud turtles 

(K. chimalahuca) from two previously unstudied habitats: a perennial semi-urban ditch and an 

ephemeral forest arroyo. My initial hypotheses of finding significant differences in the 

demographics of turtle populations from these contrasting habitats was supported in all 

calculations. Population density was drastically higher in the town’s irrigation ditch where 226 

turtles were captured (17 recaptured), estimating a population of 741±132 individuals. In 

contrast, similar trapping effort in the forest habitat yielded only a dozen individuals which were 

added to a collection of 25 prior observations, with four recaptures. Sex ratios were very 

different between the two habitats: nearly two females for every male in town, and three males 

for every female in the forest. In town, a higher female proportion, combined with the benefits of 

a year-round water source, are likely important factors contributing to increased abundance. In 

the forest, mean carapace lengths of male and female adults were significantly larger than their 

semi-urban counterparts (p = 0.036 and p = 0.012, respectively), and forest males were more 

bimodally distributed, with larger size classes more strongly represented than in town.   

 To my best knowledge, this is the first research to examine the demographic comparison 

of a kinosternid in urbanized habitats. This is also the first report of Jalisco mud turtle 

populations from either an undisturbed forested arroyo or a semi-urban irrigation ditch. Moving 

forward, this project would greatly benefit with increased sampling in the forest, as well as the 

inclusion of more turtle habitat types. Future research is planned in collaboration with local 

students and community members to explore how diet, temperature, and movement contribute to 
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the differences I detected in population structure. My continued research will support a more 

holistic understanding on the effects of urbanized habitats on mud turtle populations and express 

the importance of involving community stakeholders to sustainably meet conservation 

objectives. The significant differences I found between semi-urban and forest provide critical 

new data for the Jalisco mud turtle and will inform future conservation strategies as to how mud 

turtles population in Mexico respond to urbanization.   
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