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ABSTRACT 

 

INTERACTIVE VISUAL SELF-SERVICE DATA CLASSIFICATION 

 

APPROACH TO DEMOCRATIZE MACHINE LEARNING 

 

by 

 

Sridevi Narayana Wagle 

 

June 2021 

 

 Machine learning algorithms often produce models considered as complex black-

box models by both end users and developers.  Such algorithms fail to explain the model 

in terms of the domain they are designed for. The proposed Iterative Visual Logical 

Classifier (IVLC) is an interpretable machine learning algorithm that allows end users to 

design a model and classify data with more confidence and without having to 

compromise on the accuracy. Such technique is especially helpful when dealing with 

sensitive and crucial data like cancer data in the medical domain with high cost of errors.  

With the help of the proposed interactive and lossless multidimensional 

visualization, end users can identify the pattern in the data based on which they can make 

explainable decisions. Such options would not be possible in black box machine learning 

methodologies. The interpretable IVLC algorithm is supported by the Interactive Shifted 

Paired Coordinates Software System (SPCVis). It is a lossless multidimensional data 

visualization system with interactive features. The interactive approach provides 

flexibility to the end user to perform data classification as self-service without having to 

rely on a machine learning expert.  
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Interactive pattern discovery becomes challenging while dealing with large 

datasets with hundreds of dimensions/features. To overcome this problem, an automated 

classification approach combined with new Coordinate Order Optimizer (COO) 

algorithm and a Genetic algorithm (GA) is proposed.  The COO algorithm automatically 

generates the coordinate pair sequences that best represent the data separation and GA 

helps optimizing the proposed IVLC algorithm by automatically generating the areas for 

data classification. The feasibility of the approach is shown by experiments on 

benchmark datasets covering both interactive and automated processes used for data 

classification. 
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CHAPTER I 

 

INTRODUCTION 

 

The exponential growth in machine learning has resulted in smart applications 

making critical decisions without human intervention. However, people with no technical 

background find it often difficult to rely on machine learning models, since many of them 

are black-boxed [8].  

Interpretability plays a crucial role in deciphering behind-the-scenes actions in a 

machine learning algorithm. These interpretable machine learning techniques when 

combined with data visualization and analytics unfold numerous ways to discover deep 

hidden patterns in the data [11]. Interpretable machine learning models are transparent 

clearly explaining the technique behind the model prediction. This gives more clarity to 

the end user who can rely on the model with more confidence compared to black-box 

machine learning models [9]. 

    When it comes to data visualization, most of the visualization techniques used to 

display multidimensional data like Principal Component Analysis (PCA), Heat maps, 

Self-organizing maps etc. are lossy and irreversible [10]. With the help of new lossless 

data visualization, it is now possible to maintain structural integrity of the data. 

Moreover, these lossless techniques are completely reversible [10, 11]. 

In our proposed approach, we focus on interpretable data classification techniques 

using a combination of interactive data visualization and analytical rules. The Shifted 
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Paired Coordinates (SPC) system [11] is a lossless and a more compact way to visualize 

multidimensional data when compared to other lossless data visualization like Parallel 

Coordinates [10]. SPC allows discovering patterns more efficiently since the number of 

lines required to display the data is reduced by half [11].   

However, as the size of the data increases, pattern discovery becomes challenging 

due to occlusion. To reduce occlusion and expose hidden patterns, data representation 

needs to be reorganized. This can be achieved by applying interactive techniques such as 

changing the order of coordinates, swapping within the coordinate pair etc. These 

interactive capabilities allow the end-users to intervene and optimize the classification 

model generated by the machine thereby improving the overall model performance. To 

further leverage the classification technique, areas within the coordinate pairs are 

discovered either interactively or automatically, unravelling the deep hidden patterns in 

the data. Analytical rules are then built on the areas discovered to classify the data. 

The data classification approach using analytical rules is implemented using 

IVLC algorithm [23] wherein the areas and analytical rules are generated in iterations 

until all the data are covered. This implementation works for smaller datasets, the areas 

and analytical rules can be generated interactively by the end users. We expand this work 

on large datasets by adding automation and more visual operations. 

For the classification of larger data with hundreds of dimensions, interactive 

methods alone do not suffice. Due to high occlusion for such datasets, discovery of 

patterns purely with interactive methods becomes challenging where deep hidden patterns 
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cannot be detected by humans, thereby leading to the necessity of automation. In our 

work, automation for the classification approach is implemented in two stages: 

First Stage: Order of coordinates are optimized using COO algorithm. It is used to 

find the best coordinate orders for the Shifted Paired Coordinates System where the data 

separation can be visually identified along the vertical axis of each coordinate pair.  

Second Stage: This stage involves generating the areas within the coordinate pairs 

with close Proximity and high Purity or fitness i.e., areas that are closer to each other 

with high density of data belonging to same class are generated. GA is used for the 

automatic generation of areas with high purity. It involves generation of random areas 

and that are mutated and altered over generations to obtain the areas with high Purity or 

fitness [1].  

Several experiments are conducted on benchmark datasets like Wisconsin Brest 

Cancer (WBC), Iris, Seeds and Air Pressure System (APS) in Scania Trucks. The 

experiments are performed using both interactive and automated approach using 10-fold 

cross validation with worst case heuristics [13] where the initial validation set contains 

the data from one class overlapping with another class and vice versa. The results 

obtained with both interactive and automated techniques were on par with the published 

results in other studies. 

 

 

 

 



 

4 

 

Related Work 

 

 

The Shifted Paired Coordinates (SPC) [11] visualize data losslessly using 

coordinate pairs where each pair of data is represented on a two dimensional plane. 

Figure 1 represents an 8D data (8, 1, 3, 9, 8, 3, 2, 5) using SPC, where pair (8,1) is 

visualized in (X1, X2), the next pair (3, 9) is visualized in (X2, X4) and so on. Then these 

points are connected to form a graph.  

 

 

FIGURE 1: Representation of 8D data (8, 1, 3, 9, 8, 3, 2, 5) in SPC. 

 

Same data can be displayed in multiple ways using different combinations of 

coordinate pairs. Figures 2a and 2b represent the same data with (X8, X1), (X3, X7), (X5, 

X2) and (X6, X4) sequence of coordinates and (X2, X6), (X3, X7), (X8, X1) and (X5, X4) 

sequence of coordinates, respectively. 

Although SPC provides lossless data visualization, discovering patterns in the 

data becomes challenging due to occlusion. To overcome this challenge, IVLC algorithm 
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is used comprising of interactive controls to reorient the data by interactively changing 

the coordinate order to make the pattern discovery easier along with analytical rules to 

classify the data. 

 
(a) 8D data with (X8, X1), (X3, X7), (X5, X2) and (X6, X4) coordinate pair sequence. 

 

 

 

 

 
(b) 8D data with (X2, X6), (X3, X7), (X8, X1) and (X5, X4) coordinate pair sequence. 

 

FIGURE 2: Representation of 8D data (8, 1, 3, 9, 8, 3, 2, 5) in SPC with different 

coordinate pair sequences. 
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     Data classification using a combination of Shifted Paired Coordinates and 

analytical rules has already been implemented in [12]. The pattern discovery is simplified 

using FSP (Filter Search Present) algorithm wherein the algorithm filters out less efficient 

rules, searches for sequence of pairs of coordinates and presents the SPC visualizations. 

The FSP algorithm generates random sequences of pairs of coordinates to represent n-D 

data in SPC. Classification rules are discovered using high precision, recall and accuracy 

and allowing the end user to manually control the output rectangles produced by the 

algorithm.  

In paper [12], the experiment was conducted on three datasets from UCI Machine 

learning repository namely, 9D Wisconsin Breast Cancer (WBC) data, 34D Ionosphere 

dataset and 8D Abalone dataset. The accuracies obtained were 93.60%, 98.78% and 

98.60% respectively with 70%:30% of the data into training and test split.  Although, the 

techniques used in [12] are visual, interpretable, and explainable to the domain expert, it 

lacks interactive controls like moving the graph, data reversing, non-linear scaling, non-

orthogonal coordinates etc. Also, the coverage of the data is not 100%. All these 

shortcomings are addressed in our proposed data classification techniques. 

In paper [2], GA is implemented in a radial visualization to optimize the 

visualization quality. Here, the algorithm is used as a parallelized random search 

procedure to generate set of POIs (Points of Interests). The overall algorithm is defined 

by generating an initial population where each individual is evaluated by the cost 

function based on Kruskal’s stress. The next step is random parent selection where the 

best individual is selected out of the random selected individuals with advantage given to 
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the individuals with less POIs. Next step is applying a uniform crossover operator in such 

a way that the offspring has equal probability of selecting a gene from either of its 

parents. After crossover mutation operator is applied and cost evaluation is performed. 

 In our proposed approach, we use interactive and interpretable data classification 

technique to overcome the shortcomings in [12]. Our proposed IVLC algorithm discovers 

the classification rules with 100 % data coverage with interactive features. The proposed 

COO algorithm generates the optimized order of coordinate pairs based on statistical 

parameters rather than generating them randomly, as implemented in [12]. We use GA in 

a similar manner  as in [2] to optimize the area generation in automatic data classification 

approach where we generate Areas of Interests (AOIs) rather than POIs. The best 

individual is selected from the population based on high Purity and close Proximity. We 

further build analytical rules on these selected AOIs for classifying the data. 

This thesis offers a detailed explanation of the following:                 

• Interactive Shifted Paired Coordinate Visualization System (SPCVis) [23] 

• Different interactive techniques used in SPCVis 

• Iterative Visual Logical Classifier (IVLC) algorithm  

• Automation of the classification technique using: 

o Coordinate Order Optimizer (COO) 

o Genetic Algorithm (GA) 

• Experiments with benchmark datasets  

• Comparing the results with published results 

• Conclusions 
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CHAPTER II 

 

INTERACTIVE SHIFTED PAIRED COORDINATE SYSTEM 

 

The lossless n-D visualization is achieved by representing data in Interactive 

Shifted Paired Coordinate System (SPCVis). Reordering the coordinates is one of the 

interactive features provided by the SPCVis software system. Using this feature, the 

coordinates are reordered in such a way that the class separation is prominent along the 

vertical coordinates. The discovering of coordinates to get good separation of classes is 

performed interactively by the user. The data used for SPCVis are normalized to [0, 1]. 

There are several interactive features provided to the end user like reversing data, 

non-linear scaling etc. For instance, if x is an n-D point where x = (x1, x2, x3, … xn), the 

reverse of x1 would display the data as (1 - x1, x2, x3, … xn). Also, SPCVis software 

system provides the user ability to click and drag the whole (Xi, Xj) plot to a desired 

location until occlusion is reduced. Another interactive control allows a user to display 

the user selected class on top of another class. Figure 3a displays WBC breast cancer data 

with red class on top and Figure 3b with green class on top. This helps the user to observe 

the pattern of individual classes more clearly.  
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(a) WBC data with red class on top. 

 

 

 
(b) WBC data with green class on top. 

 

FIGURE 3: WBC data (9D) visualized in SPCVis. 
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Non-linear scaling is an interactive feature provided by the SPCVis software 

where only a part of the user selected coordinates is scaled differently. The generalized 

formula for an n-D point xj is given in Equation 2.1, where k is a constant and 0 < k < 1, r 

is the resolution of the data i.e., the shortest distance between the data points. The value 

of k is set by the user.  Figure 4 displays the WBC data after applying the non-linear 

scaling at r = 0.1, k = 0.6 on X1 and k = 0.3 on X2, X5 and X7 coordinates. 

 

𝑥𝑗
′ = {

𝑥𝑗  ,                                         if 𝑥𝑗 <  𝑘

𝑥𝑗 + 𝑟 ×  𝑔𝑟𝑎𝑝ℎ𝑊𝑖𝑑𝑡ℎ,      if 𝑘 ≤ 𝑥𝑗 < 1
 (2.1) 

 
 

 
FIGURE 4: WBC data after non-linear scaling on all the vertical coordinates. 

 

Another interactive feature provided by SPCVis software is Non-orthogonal 

coordinate system that has a coordinate inclined at an angle other than 90° with respect to 

the other coordinate. Figure 5 displays a simple 2D graph with Y coordinate inclined at 
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an angle of 30° with respect to its previous Y coordinate. Figure 6 displays Non-

orthogonal coordinate representation with horizontal coordinates X6 and X5 inclined at     

-30°. 

 
FIGURE 5:  Non-orthogonal display of 2D data (Y=30°). 

 

 

 
FIGURE 6: Non-orthogonal display of WBC data (X6 and X5 inclined at -30°). 
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Interactive controls like non-linear scaling, non-orthogonal coordinates etc. allow 

improving visual discrimination of classes. However, using interactive visualization 

alone does not completely perform the data separation. It only provides a base for the 

class separation in terms of visual discrimination.  

This chapter uses the IVLC algorithm that generates analytical rules to perform 

further class separation after reordering the coordinates. This algorithm generates these 

rules mainly using the threshold values generated from non-linear scaling. The rules 

belong to the class of rules proposed in [12]. 

Visualizing data with larger dimensions become challenging in SPC. To display 

data of larger dimensions, a modified version of the SPC called as Serpent Coordinate 

System (SCS) is proposed. It is visualized in a grid like structure to accommodate all the 

dimensions on a single screen. Air Pressure System (APS) failure at Scania trucks [5] 

consists of 2 classes and 170 dimensions wherein 4 dimensions we removed since all the 

data points under those columns were 0 and were not informative. The data with 166 

dimensions are displayed in Figure 7 and the coordinate labels corresponding each 

coordinate pair are displayed in Table 1. 

TABLE 1: Coordinate Labels for Serpent Coordinate System for Figures 7a and 7b. 
(X1, X2) (X3, X4) (X5, X6) …. (X15, X16) (X17, X18) (X19, X20) 

(X21, X22) (X23, X24) (X25, X26) …. (X35, X36) (X37, X38) (X39, X40) 

(X41, X42) (X43, X44) (X45, X46) …. (X55, X56) (X57, X58) (X59, X60) 

(X61, X62) (X63, X64) (X65, X66) …. (X75, X76) (X77, X78) (X79, X80) 

(X81, X82) (X83, X84) (X85, X86) …. (X95, X96) (X97, X98) (X99, X100) 

(X101, X102) (X103, X104) (X105, X106) …. (X115, X116) (X117, X118) (X119, X120) 

(X121, X122) (X123, X124) (X125, X126) …. (X135, X136) (X137, X138) (X139, X140) 

(X141, X142) (X143, X144) (X145, X146) …. (X155, X156) (X157, X158) (X149, X160) 

(X161, X162) (X163, X164) (X165, X166)     
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(a) APS data with green class on top. 

 
(b) APS data with red class on top. 

 

FIGURE 7: APS failure at Scania trucks data (166D) visualized in SCS. 
 

 

 

 



 

14 

 

CHAPTER III 

 

METHODS FOR INTERACTIVE DATA CLASSIFICATION  

 

 

 

Iterative Visual Logical Classifier (IVLC) Algorithm  

 

 

Below we present the Iterative Visual Logical Classifier (IVLC) algorithm that 

classifies data in iterations. It is different from other logical classifiers since it performs 

classification in visual space. As discussed in Chapter II, once we reorder the coordinates 

to find good vertical separation and obtain the vertical threshold values from non-linear 

scaling, the analytical rules are generated interactively based on these threshold values. 

This process of reordering and generating analytical rules are continued until we cover all 

the data in given dataset. The algorithm generates set of interpretable analytical rules for 

data classification. All steps can be conducted by the end user as a self-service. The 

output of IVLC algorithm results in series of rectangular areas. Different outputs of IVLC 

algorithm are displayed in Figure 8. The steps are listed below. 

Step 1: Reorder the coordinates to find a good vertical separation for classes and 

perform non-linear scaling to get the threshold values along the vertical coordinates. 

Reordering of coordinates and non-linear scaling is performed interactively using SPCVis 

software system. 
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(a) Example of area (R5) generated by IVLC for WBC data. 

 

 
(b) Overgeneralized Area R1 generation (larger part of the area is empty) for Iris (4D) data [5]. 

 

 

 
(c) Optimized Area R՛

1 generation for Iris data. 

 

FIGURE 8: Outputs of IVLC algorithm. 
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Step 2: Generate the analytical rules mainly based on the threshold values 

obtained from non-linear scaling from the previous step. For example, if we denote the 

set of areas generated as Rclass1 and Rclass2, then the classification rules for n-D point x = 

(x1, x2, x3, …, xn) are defined in Equations 3.1 and 3.2. 

 

If xi ∈  Rclass1, then x ∈  class 1 (3.1) 

If xj ∈  Rclass2, then x ∈  class 2 (3.2) 

                                                                  

Step 3: The data that do not follow the rules generated in step 2 are used as input 

for next step. Also, in this step, the analytical rules can be tuned to avoid 

overgeneralization [14]. Figure 8b displays the generation of R1 area where a large part of 

the area is empty. The area can be reduced by generating the area R՛
1 of smaller 

dimension to avoid overgeneralization (see Figure 8c).   

Step 4: The final step is to repeat the steps above until all the data are covered.  

 

 

 

Model Evaluation with Worst-case k fold Validation Approach 

 

Although Cross Validation is a common technique used for model evaluation, it 

comes with its own challenges. Due to the random split of training and validation data, 

we might observe a bias in the estimated average error rate. Also, if we consider all the 

possible splits, it becomes computationally challenging to find all the combinations since 

the number of splits grows exponential with the number of given data points [13].  
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In order to overcome this challenge, we use a worst case heuristics technique to 

split the data into training and validation sets in k-fold cross validation. The worst case 

fold contains the data of one class that are similar to cases of the opposing class [13] 

making classification more challenging with higher number of misclassification than in 

the traditional random k-fold cross validation.  If the algorithm produces high accuracy in 

the worst-case fold, then the average case accuracy produced by the traditional random k-

fold cross validation is expected to be greater. 

In this chapter, the worst-case fold is extracted using visual representation of the 

data in SPC system. As already mentioned, the data are displayed in such a way that they 

tend to be separated along the vertical axes in the SPC. For instance, if the dataset 

contains class A and class B with class B at the bottom and class A at the top in SPC 

visualization, then the worst-case validation split contains the cases with class A 

displayed on the bottom along with class B and vice versa. Since 10-fold cross validation 

is used in our classification model, first validation fold contains the top 10% of the worst-

case data n-D points, next validation fold contains the next 10% of the worst-case data 

and so on. 

 

Experiments with Interactive Data Classification Approach 

 

 

Iris Data (4D) 

 
 

The first dataset is the Iris data [5]. It has 4 dimensions (sepal length, petal length, 

sepal width and petal width) with a total of 150 cases. The data consists of three classes 
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namely setosa, versicolor and virginica, each class consisting of 50 cases. Figure 9 

displays the data in SPCVis software system. The four dimensions are denoted as X1, 

X2, X3 and X4 coordinates. Class 1 separation is defined by the rule in Equation 3.3. 

 
FIGURE 9: Visualization of rule for R՛1 on Iris data for class 1 separation. 

 

 

If (x4, x3) ∈ R՛1, then x ∈ class 1. (3.3) 

 

The optimized coordinate order for separation of classes 1 and 3 are (X1, X3) and 

(X2, X4) with X3 and X4 as vertical coordinates. Separation criteria for class 2 and class 3 

is given in Equation 3.4. 

  

If (x1, x2, x3, x4) ∈ R2 then x ∈ class 2, else x ∈ class 3. (3.4) 
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We can further refine rule defined by R՛2 = R21 & R22 by adding another area R3 to 

form a new optimized rule in Equation 3.5. 

 

If (x1, x2, x3, x4) ∈ R՛2 or R3, then x ∈ class 2, else x ∈ class 3. (3.5) 

 

  Figure 10 visualizes the above rule for separation classes 2 and 3. The accuracy 

obtained in 10-fold cross validation with worst case split is 100%. 

 
FIGURE 10: Visualization of rule for R2 and R3 on Iris data for classes 2 and 3 

separation. 
 

 

 

Wisconsin Breast Cancer (WBC) Data (9D) 

The second dataset is Wisconsin Breast Cancer (WBC) dataset [5]. It contains 699 

cases of data with 9 features. In this dataset, 16 cases were incomplete and hence were 

removed. Remaining data with 683 cases consists of 444 benign cases and 239 malignant 
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instances. Figure 3 displays WBC data after loading in SPCVis software system. Figure 

11 visualizes analytical rules for R5 and R6 generated for benign class classification.  

 
FIGURE 11: Visualization of rules for R5 and R6 on WBC data. 

 

 

The analytical rules for R5 and R6 for classification of class 1 is defined in (3.6). 

 

If (x1, x5, x2, x6, x4, x7, x8, x9) ∈ R5 & R6, then x ∈ class 1 (3.6) 

 

R6 = R61 or R62. (3.7) 

 

The accuracy obtained after 10-fold cross validation technique with worst case heuristics 

is 99.56%. 

 

Seeds Data (7D) 

The third dataset consists of seeds data with 7 dimensions and 210 instances. The 

data contain three classes: Kama, Rosa and Canadian, based on the characteristics of 

wheat kernels like seed perimeter area, length and width of kernel etc. Each class consists 

of 70 instances [5]. The data are loaded, and the coordinates are reordered to find the 
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prominent class separation along vertical coordinates. The analytical rules are generated 

based on the vertical separation. Figure 12 displays seeds data with areas for analytical 

rules R1 and R2 for class 2 (green) separation. Due to odd number of coordinates X2 

coordinate is duplicated as the 8th coordinate since X2 coordinate provided good visual 

discrimination between the classes. The rule for class 2 classification is defined in (3.8). 

The accuracy obtained after 10-fold cross validation technique with worst case heuristics 

is 100%. 

 

If (x1, x7, x4, x2, x6) ∈ (R1 or R2), then x ∈ class 2 (3.8) 

 

R2 = R21 or R22 (3.9) 

                                                                                                      

 
FIGURE 12: Visualization of rules for R1 and R2 on Seeds data (7D) for class 1 

separation with all the cases from class 2. 
 

CHAPTER IV 
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METHODS FOR AUTOMATED DATA CLASSIFICATION  

 

 

In most of the scenarios, interactive approach to data classification works well for 

small dataset. When handling large data, this approach becomes tedious and time 

consuming. Also, due to the display of large number of data instances within limited 

space would lead to occlusion and becomes challenging for the end use to find the 

patterns. To overcome this problem, automation is used where the patterns are discovered 

automatically by the machine with minimal human intervention. Automation is 

implemented using two algorithms below. 

• Coordinate Order Optimizer (COO) algorithm  

• Genetic Algorithm (GA) 

These algorithms are used in combination with non-linear scaling, to enhance the 

data interpretability. Figure 13 provides the overview of the automated data classification 

approach. 

        
             

                FIGURE 13: Overview of automation for data classification in SPCVis. 

 

 

 

 

 

Iterative 
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Coordinate Order Optimizer (COO) Algorithm 
 

 

COO algorithm optimizes the order of coordinates by primarily using Coefficient 

of Variation (CV) [7] parameter, also called as relative standard deviation (RSD) defined 

as the ratio of the standard deviation σ to the mean µ of the given data sample. 

𝐶𝑣 =
σ

µ
 (4.1) 

 

            CV is a standardized measure of dispersion of data distribution. It is computed 

individually per coordinate for each class. Next, the mean of all CVs of classes of each 

coordinate is calculated. Lesser the mean of CV, lesser the data dispersion along the 

coordinate. The coordinate with the least mean of CV is considered the best coordinate. 

Hence, the coordinates are arranged in the descending order of the mean CV values. Figures 

14a and 14b display Breast Cancer data before and after order of coordinates is optimized, 

respectively. In the optimized order of coordinates (Figure 14b), the green class is settled 

at the bottom and red class on the top whereas in the Figure 14a, more green lines are at 

the top along with red class and more red lines in the bottom along with green lines. 
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(a) WBC data before optimization of order of coordinates. 

 

 
(b) WBC data after optimization of order of coordinates (lesser green cases on top). 

 

FIGURE 14: Visualization of WBC data before and after applying COO algorithm.  
 

 

Non-Linear Scaling: The threshold for all the vertical coordinates is calculated 

from the average of the bottom class taken from vertical coordinates. Non-linear scaling 

is performed using Equation 2.1 for all the vertical coordinates. This improves data 
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interpretability and provides better visualization of separation of classes. The output of 

non-linear scaling is displayed in Figure 4 that enhances the visual separation of classes. 

 

 

Genetic Algorithm (GA) 

 

GA is used to generate the optimized areas of high fitness or purity [4] based on 

which the analytical rules are created for further classification. An overview of the 

implementation of GA in our approach is shown in Figure 15 for discovering the areas 

for classification. In this context, areas are referred as Area of Interest (AOI).   

Initial Population Selection: The initial population contains randomly generated 

rectangles (see Figure 16) defined by the fixed ratio r of each coordinate. For instance, r 

can be 0.1 of length of the coordinate. The data are normalized to [0,1] interval. The 

generation of the AOI  in the SPCVis using GA is an iterative process where each 

iteration creates a generation [1] of a new set of AOIs. Before generating the AOIs, a 

search space [2] is defined containing maximum cases belonging to the class on which 

we build analytical rules. Consider a situation where analytical rules are being built to 

classify class k.  Let ximax(k) and ximin(k) be the maximum and minimum data points 

respectively belonging to coordinate Xi and xjmax(k) and xjmin(k) be the maximum and 

minimum data points respectively belonging to coordinate Xj. The number of Areas of 

Interests NAOI generated to classify class k within a coordinate pair (Xi, Xj) is given in 

Equations 4.2 and 4.3. 
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FIGURE 15: GA flow chart used in SPCVis data classification. 

 

 

NAOI =  
S(𝑘)

𝑟2
   

 

(4.2) 

S(k) = (ximax(k)- ximin(k)) (xjmax(k)- ximin(k)) (4.3) 
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FIGURE 16: Random generation of areas in WBC data. 

 
 

Parents Selection: This stage involves selection of the AOIs or parents to generate 

an AOI called the offspring, i.e., combining two areas to form a bigger area. The parents 

are selected based on two criteria (1) Purity or fitness, and (2) Proximity. 

     Purity or fitness of an AOI with respect to class k for a given pair of coordinates (Xi, 

Xj) is defined as the ratio of the number of data points belonging to class k to the total 

number of data points within the AOI. Let AOIt be an AOI in the coordinate pair (Xi, Xj). 

The purity Pk(AOIt) of a single AOIt with respect to class k is given in  Equation (4.4). 

Nk(AOIt) is the number of points (xi, xj) in AOIt in (Xi, Xj) that belong to lines from class 

Ck and is defined in Equation 4.5. N(AOIt) is the total number of points (xi, xj) within a 

given AOIt  in (Xi, Xj) and is defined in Equation 4.6. 
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P𝑘(AOI𝑡) =  
N𝑘(AOI𝑡)

N(AOI𝑡)
   (4.4) 

Nk(AOIt)  = ||{(xi,  xj): (xi, xj) AOIt &Ck}|| (4.5) 

N(AOIt)  = ||{(xi, xj): (xi, xj) AOIt}|| (4.6) 

 

After computing the purity of the AOIs, the parents with closest Proximity 

(nearest parents) are selected for the next stage, i.e., the crossover. While Proximity can 

be defined in multiple ways, in our experiments we applied the Euclidean distance 

between the mid-point of two areas within the given coordinate pair commonly used in 

GA for similar tasks [2]. For instance, given the mid-point of two AOIs {(xim1, xjm1), (xim2, 

xjm2)} within coordinate pair (Xi, Xj), the Proximity of two AOIs is given in Equation 4.7. 

 

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 = √(𝑥𝑖𝑚1 − 𝑥𝑖𝑚2)2 + (𝑥𝑗𝑚1 − 𝑥𝑗𝑚2)2 (4.7) 

 

Crossover: Once the parents with highest Purity and closest Proximity (nearness) 

are selected, the parent AOIs are combined to form a new AOI (offspring). A single 

parent AOIPg  is represented in Equation 4.8. Here x1, x2, y1, y2 are left, right, bottom ant 

top coordinates of the rectangular AOIPg and is represented in the Figure 17. 

 

AOIPg = Pg(x1, x2, y1, y2) (4.8) 
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FIGURE 17:  Representation of single parent AOIPg from generation g. 

 

 

A crossover of two parents AOIP1g and AOIP2g from generation g to produce an 

offspring AOIO1g within a given coordinate pair (Xi, Xj) is represented in Equation 4.9. 

The two parents are defined in Equations 4.10 and 4.11. The function F(AOIP1g, AOIP2g) 

is defined in  Equation 4.12 as an envelope around these two AOIs. Figure 18 displays 

different types of crossovers of the parent AOIs (with and without overlapping, or 

diagonally overlapping). 

 

AOIO1g = F(AOIP1g, AOIP2g) (4.9) 

AOIP1g = P1g(x11, x12, y11, y12) (4.10) 

AOIP2g = P2g(x21, x22, y21, y22 (4.11) 

F(AOIP1g, AOIP2g) = {min(x11, x21), max( x12, x22), min(y11, y21), max(y12, y22)} (4.12) 

 

Mutation: In GA, certain characteristics of the offspring generated from the 

previous generation are modified (mutated) in order to speed up the process of reaching 

an optimized solution. This includes modifying the characteristics of the offspring either 
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by flipping, swapping or shuffling the properties that represent the offspring. For 

instance, if the offspring is represented by bits, then the mutation by flipping would 

include switching some of the bits from 0 to 1 or vice versa [18].  

Since the objective of mutation is to generate an offspring with better 

characteristics than its parents, in our proposed technique, we generate the mutated 

offspring by interactively generating a new parent AOI with high Purity and close 

Proximity with the automatically generated parent AOI. This results in an offspring with 

better characteristics compared to its parents in terms of size and Purity. Figure 19a 

represents the automatically generated parent AOI in purple (straight line) and 

interactively generated parent AOI (dotted lines). The resulting mutated offspring AOI 

has superior characteristics compared to its parents with high Purity and larger area 

compared to its previous generation as displayed in Figure 19b. 

Termination: Since GA process is iterative, there are several conditions based on 

which the process can be terminated. In our proposed method, we use two techniques as 

the termination criteria: (1) areas with highest Purity or fitness (100%) are generated, or 

(2) manual inspection termination in SPCVis. If either of the two criteria is met, the 

process is terminated. 

Analytical Rule Generator: This is similar to the second step performed in IVLC 

algorithm as discussed in Chapter III. The only change that the areas used here are 

generated from GA whereas in Chapter III, the areas used are interactively generated. 
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(a) Crossover of two overlapping parent AOIs. 

 

  
(b)  Crossover of two non - overlapping parent AOIs. 

 

 
(c)  Crossover of two diagonally overlapping parent AOIs. 

 

FIGURE 18:  Different types of crossovers of two parent AOIs to generate offspring 

AOI. 
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(a) Parent AOI (dotted lines) generated 

automatically (straight lines) and interactively 

(dotted lines) with high purity in generation g. 

(b) Mutated Offspring in generation g + 1. 

 

FIGURE 19: Visualizations of consecutive generations of AOIs in WBC data. 
 

 

Experiments with Automated Data Classification Approach 

Experiments are conducted with same datasets mentioned in Chapter III i.e., 

WBC, Iris and Seeds datasets. In addition to these datasets, experiment is also conducted 

on Air Pressure System (APS)  Failure at Scania trucks. This dataset consists of 60,000 

instances with 170 features. Compared to interactive approach, the automated techniques 

provided better results with smaller number of areas and less iterations.  

 

Iris Data (4D) 

Class 1 of Iris data is classified by running the COO algorithm and GA. The 

optimized order of the coordinates for class 1 classification is (X4, X3) and (X1, X2). It is 

displayed in Figure 20. The rule for class 1 (green) separation defined in Equation 4.13. 
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r1: If (x4, x3) ∈  R11, then x ∈  class 1 (4.13) 
 

 

 
FIGURE 20: Visualization of Iris data with class 1 separation rule. 

 

 

After class 1 separation, COO is run again for classifying the remaining classes. 

The optimized order of coordinates for class 2 and class 3 separation are (X1, X3) and 

(X2, X4). The visualization of classes 2 and 3 after reordering the coordinates is shown in 

Figure 21. 

 
FIGURE 21: Visualization of Iris data with classes 2 and 3 after reordering the 

coordinates.  
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    Figure 21 clearly displays separation of classes 2 and 3 along the vertical 

coordinates. This visualization is further enhanced by applying the non-linear scaling 

with following thresholds on coordinates:  0.7 on X3 and 0.71 on X4. 

GA is run on class 2 and class 3 data to generate the areas. Visualization of non-

linear scaling along with the areas are displayed in Figure 22a with 10 cases. Figure 22b 

displays the same visualization with all the cases from class 2 and class 3. 

The areas R2 and R3 for classes 2 and 3 separation are defined in Equations 4.14 

and 4.16 and their corresponding rules are defined in Equations 4.15 and 4.17. 

 

   R2 = R12 & R21 & (R13 & R23) & R22     (4.14) 

r2: If (x1, x2, x3, x4) ∈  R2 , then x ∈  class 2 (4.15) 

R3 = (R11 & R2) (4.16) 

r3: If (x1, x2, x3, x4) ∈  R3  , then x ∈  class 3 (4.17) 

The area parameters generated for Iris data classification is listed in Table 2. The 

accuracy obtained for Iris data classification with 10-fold cross validation using worst-

case heuristics approach is 100%. 
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(a) Visualization of rule r2 on Iris dataset for classes 2 and 3 separation with 10 cases. 

  
(b) Visualization of rule r2 on Iris dataset for classes 2 and 3 separation with all the cases. 

 

FIGURE 22: Visualization of rule r2 on Iris dataset for classes 2 and 3 separation. 
 

 

     

Table 2. Parameters of the areas generated for Iris data classification. 
 Rectangle Parameters 

 Left Right Bottom Top Coordinate Pair 

R11 0.0 0.3 0.0 0.2 (X1, X3) 

R12   0.16   0.75 0.3 0.7 (X1, X3) 

R13   0.45   0.56   0.55 0.7 (X1, X3) 

R21 0.0   0.59   0.37   0.71 (X2, X4) 

R22 0.0   0.45   0.67   0.71 (X2, X4) 

R23 0.1 0.3 0.5   0.63 (X2, X4) 
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Wisconsin Breast Cancer (WBC) Data (9D) 

 

The second dataset is WBC dataset, as discussed in Chapter III. Running the COO 

algorithm produced the following order of coordinates: (X5, X1), (X3, X7), (X4, X2), (X9, 

X6) and (X8, X5). Figure 23a displays WBC data visualized in SPCVis with 12 cases of 

class 1 data along with the areas.  

The rectangle Rkm is mth rectangle in the kth pair of coordinates. For instance, in 

Figure 23a, rectangle R24 is a 4th rectangle in the second pair of coordinates that is 

(X3,X7). Figure 23b displays all the cases from both classes of WBC data  along with the 

non-linear scaling with following thresholds on coordinates: 0.6 on X1, 0.25 on X7 and X2 

and 0.3 on X6. The areas R1-R3 are defined in Equations 4.18 – 4.20. The rule r is defined 

in Equation 4.21. The area coordinates are given in the Table 3. The accuracy obtained 

after 10-fold cross validation technique with worst case heuristics is 99.71%. 

 

R1 = R11& R15  & R41 & R42 & (R22 or R23) or (R31 or R32 ) (4.18) 

R2 = R14 & R12  & (R21 or R24) or R33 (4.19) 

R3= R13 & R24 (4.20) 

r: If (x1, x2, x3, x4, x5, x6, x7, x9)  ∈  R1 or R2 or R3 then 

x ∈ Class 1, else x ∈ Class 2 
(4.21) 
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(a) Visualization of rule r on WBC dataset with 12 cases. 

 
(b) Visualization of rule r on WBC dataset with all the cases. 

 

FIGURE 23: Visualization of rule r on WBC dataset for class 1 separation. 
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         TABLE 3. Parameters of the areas generated for WBC data classification. 
 Rectangle parameters 

 Left Right Bottom Top Coordinate Pair 

R11 0.0 0.55      0.0 0.45 (X5, X1) 

R12 0.3         0.5   0.75 0.85 (X5, X1) 

R13 0.1  0.25   0.65      0.7 (X5, X1) 

R14 0.0  0.25 0.5 0.85 (X5, X1) 

R15  0.40  0.55   0.40 0.45 (X5, X1) 

R21 0.0  0.25 0.0 0.15 (X3, X7) 

R22 0.1         1.0 0.4      0.6 (X3, X7) 

R23 0.8         1.0 0.1 0.15 (X3, X7) 

R24 0.2         0.5 0.2 0.25 (X3, X7) 

R31 0.9         1.0 0.6      0.7 (X4, X2) 

R32 0.9         1.0 0.3 0.45 (X4, X2) 

R33 0.0         0.1 0.0 0.12 (X4, X2) 

R41 0.0         0.8 0.0      0.7 (X9, X6) 

R42 0.3         0.6 0.2 0.35 (X9, X6) 
 

 

Seeds Data (7D) 

Seeds data, as discussed in Chapter III consists of 7 dimensions. Due to odd 

number of dimensions, X7 is duplicated to display the data in SPCVis (see Figure 24). 

 

FIGURE 24: Visualization of Seeds data with all the three classes in SPCVis. 
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Analytical rules for class 3 (blue) are generated after running the COO algorithm 

and GA. The optimized order of the coordinates for class 1 classification is (X3, X1), (X7, 

X5), (X6, X2), and (X3, X4). Figure 25 represents the optimized order of coordinates. 

 
FIGURE 25: Visualization of Seeds data with all the three classes in SPCVis after 

coordinate order optimization. 
 

 

Non-linear scaling is then performed with following thresholds on coordinates: 

0.4 on X1, 0.45 on X5, 0.4 on X2 and 0.4 on X4. The visualization of classes 2 and 3 after 

reordering the coordinates and non-linear scaling is shown in Figure 26. 

Areas are generated by running GA and analytical rules are built using these 

generated areas. The visualization of all the three classes with non-linear scaling and the 

areas for class 3 (blue) separation is displayed in Figure 27a. The area  is defined in 

Equation 4.22. The parameters of the areas generated by GA are listed in Table 4. 
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FIGURE 26: Visualization of Seeds dataset with classes 2 (red) and 3 (blue) after 

performing non-linear scaling on optimized order of coordinates. 

 

R1 = R11 & R21 & R41 & (R42 or R31) & (R12 & R22 & (R32 or R43)) (4.22) 

The rule r1 for class 3 classification is given in Equation 4.23.  

r1: If (x1, x2, x3, x4, x5, x6, x7) ∈  R1, then x ∈  class 3 (4.23) 

 

 
TABLE 4. Parameters of the areas generated for classification in Seeds  data  in 1st  

iteration. 
  Rectangle Parameters 

 Left Right Bottom Top Coordinate Pair 

R11 0.0   0.85 0.0 0.3 (X3, X1) 

R12 0.5   0.85   0.12   0.26 (X3, X1) 

R21 0.1   0.55 0.0   0.43 (X7, X5) 

R22   0.27   0.55 0.2   0.43 (X7, X5) 

R31   0.58   0.72   0.25   0.35 (X6, X2) 

R32 0.0   0.45   0.21 0.3 (X6, X2) 

R41   0.32 0.8   0.25   0.36 (X3, X4) 

R42   0.32 0.4   0.25 0.3 (X3, X4) 

R43   0.45   0.55 0.0   0.15 (X3, X4) 
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The cases that do not follow the rule generated for class 3 is sent to the next 

iteration where rules are generated for other classes. Areas are generated again by 

running GA and analytical rules are built using these generated areas. The visualization 

with all the three cases along with non-linear scaling and the areas are displayed in Figure 

27b. In this case the rule is generated for class 2 (red). The optimized order of the 

coordinates remains the same. Non- linear scaling with the same threshold as in the 

previous iteration is performed on the vertical coordinates. The areas R2 and R3 are 

defined in Equations 4.24 and 4.25.  The rules r2  and r3 for classes 2 and 3 separation is 

given in Equations 4.26 and 4.27. The accuracy obtained for Seeds data classification 

with this approach and applying 10-fold cross validation using worst-case heuristics 

validation split is 100%. The parameters of the areas generated are listed in Table 5. 

 

R2 = R13 & R23 & ((R14 & R24 & R33) & (R34 & R44)) (4.24) 

R3 = (R1 & R2) (4.25) 

r2: If (x1, x2, x3, x4, x5, x6, x7) ∈  R1 , then x ∈  class 2 (4.26) 

r3: If (x1, x2, x3, x4, x5, x6, x7) ∈  R3, then x ∈  class 1 (4.27) 
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 (a)  Cases covered by rule r1 on Seeds dataset for class 3 (blue) separation.  

 

 

 
(b).  Cases covered by rule r2 on Seeds dataset for class 2 (red) separation.  

 

FIGURE 27: Visualization of rules r1 and r2 on Seeds dataset for classes 2 and 3 

separation with all the cases. 
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TABLE 5. Parameters of the areas generated for classification in Seeds  data in 2nd 

iteration. 
 Rectangle Parameters 

 Left Right Bottom Top Coordinate Pair 

R13 0.3   0.94 0.45 1.0 (X3, X1) 

R14   0.58   0.91 0.45   0.62 (X3, X1) 

R23 0.3 1.0 0.42 1.0 (X7, X5) 

R24 0.3   0.67 0.52   0.76 (X7, X5) 

R33 0.0   0.63 0.46   0.65 (X6, X2) 

R34   0.27   0.55 0.51   0.65 (X6, X2) 

R44   0.63   0.74 0.46   0.63 (X3, X4) 

 

 

APS (Air Pressure System) Failure at Scania Trucks Data (170D) 

APS failure at Scania Trucks from UCI Repository [5] consists of two classes. 

Class 1 corresponds to the failure in Scania trucks that is not due to the air pressure 

system and class 2 corresponds to the failure in Scania trucks that is due to the air 

pressure system. This data consists of 60000 cases and 170 dimensions. However, the 

dataset contains a large number of missing values. These missing values are replaced by 

calculating 10% of the maximum value of the corresponding column and multiplying the 

result by -1. In this type of imputation, all the missing data are replaced with 0 after 

normalization and hence does not interfere with the main data. Also, there are 4 columns 

of data with all 0 values. After imputation and removing the columns without any 

information, the final data contains 60000 cases with 166 dimensions. As discussed in 

Chapter II, visualizing 166 dimensions becomes very challenging. Hence, we use SCS to 

visualize high dimension data as shown in Figure 7.  

Data classification using interactive approach becomes very tedious due large 
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number of dimensions and instances. Hence, for this dataset, classification is performed 

using automation technique. After running the COO algorithm, the result contains 166 

coordinates arranged from the most to least optimized coordinates. Here, we start with 

extracting top 4 coordinates and perform analysis on the data with 2 pairs of coordinates 

displayed in SPCVis. The coordinates are gradually increased by pairs until we get the 

desired results. In this case, 12 coordinates were selected for further analysis. They are 

X7, X140, X70, X75, X145, X74, X141, X71, X143, X76, X122, and X69. APS failure data with top 

12 coordinates with green class on top is displayed in Figure 28a and red class on top is 

displayed in Figure 28b. 

The visualizations in Figure 28 display high degree of occlusion even with the 

best order coordinates. Although there is fair amount of separation observed in the first 

pair of coordinates. Data in the remaining five pairs are highly occluded. Since there is no 

clear vertical separation between red class and green class, non-linear scaling becomes 

insignificant and hence not performed on this dataset. GA is run on this data to generate 

areas with high purity. The resulting visualization after running GA is displayed in Figure 

29. 
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(a) APS failure data with green class on top. 

 
(b) APS failure data with red class on top. 

 

FIGURE 28: Visualization of 12 best coordinates of APS failure data in SPCVis. 
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FIGURE 29: Visualization of APS failure data with areas generated by GA for red class 

classification. 

 

Due to two main reasons, the data pattern cannot be interpreted by the end users 

in this situation: (1) high density of data within the areas generated and (2) small size of 

the areas generated by GA. To address these issues, we use zooming and averaging. 

Zoom is an interactive feature wherein the small areas can be zoomed to view the data 

more clearly. Figure 30 displays the zoomed image of area R31. 

The zoomed visualization in Figure 30a solves the problem partially. Although, 

the data is distinctly visible, the pattern is still hidden. To view the overall distribution of 

red and green class data, the average of individual class within the area is performed. 

Figures 30b and 31 display the averaged red and green class with R31 area. 
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(a) Visualization of zoomed R31 area in 

the APS failure data without averaging. 
(b) Visualization of zoomed R31 area in the APS 

failure data after averaging. 

 

FIGURE 30: Visualization of R31 area in the APS failure data with zooming and 

averaging. 
 

 
FIGURE 31: Visualization of zoomed R31 area in the APS failure data with averaged 

classes with the area (without the surrounding data). 
 

 

Averaging is performed on all the areas generated by the algorithm. Since the 

areas are generated in the first, second and fifth pair of coordinates, we can disregard the 

coordinate pairs in between second and fifth, resulting in only four pairs of coordinates. 

The overall visualization of red class classification is displayed in Figure 32. The area R1  
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rule r1 generated for red class 2 (red) classification is defined in Equations 4.28 and 4.29, 

respectively. 

 

FIGURE 32: Visualization of rule r1 for red class classification in the APS failure data. 
 

 

 

R1 = R11 & R21 & (R51 or R52 or R53) & (R54) (4.28) 

 

r1: If (x7, x140, x70, x75, x143, x76) ∈  R1 , then x ∈  class 2 

 

(4.29) 

 

Data that do not follow R1 rule is sent to the next iteration. The COO algorithm is 

run on all the 166 coordinates again to get the optimized order of coordinates for the 

remaining data. The order of coordinates obtained are X61, X164, X103, X97, X9, X39, X1 

and X26. The data is visualized in Figure 33a. 
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(a) Visualization of APS failure data with top 8 coordinates. 

 
(b) Visualization of r2 in APS failure data with top 8 coordinates with non-linear scaling. 

 

FIGURE 33: Visualization of APS failure data in the second iteration. 
 

 

In the second iteration, the green class tends to be clustered at the bottom and red 

towards the top. Since the separation along vertical coordinates is clearly visible, we 

performed the non-linear scaling to get better data interpretation with thresholds 0.15 on 
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X164, 0.2 on X97, 0.25 on X39, and 0.25 on X26. Then the data is visualized with non-linear 

scaling and analytical rules discovered (see Figure 33b).  The area R2 and rule r2 for class 

2 (red) classification is defined in Equations 4.30 and 4.31. 

 

R2 = T1 & T2 & T3 & (T4 or R41) (4.30) 

r2: If (x61, x164, x108, x97, x9, x39, x1, x26) ∈  R2, then x ∈  class 2 else class 1 (4.31) 

(T1 & T2 & T3 & T4 are the threshold values of non-linear scaling) 

 

The accuracy obtained for APS data classification with this approach and 

applying 10-fold cross validation using worst-case heuristics validation split is 99.36%. 

The area parameters used for APS data classification are listed in Table 6. 

 

TABLE 6: Parameters of the areas generated for classification in APS failure data. 
 Rectangle Parameters 

 Left Right Bottom Top Coordinate Pair 

R11 0.0 0.2 0.0 0.1 (X7, X140) 

R21 0.1 0.3   0.19   0.52 (X70, X75) 

R31   0.18 0.3   0.36 0.4 (X143, X76) 

R32   0.15 0.3   0.45 0.5 (X143, X76) 

R33   0.16   0.28   0.22   0.28 (X143, X76) 

R34 0.0   0.11 0.0 0.6 (X143, X76) 

R41 0.0 0.6 0.0 0.1 (X1, X26) 
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CHAPTER V 

 

EXPERIMENTAL RESULTS AND COMPARISON WITH PUBLISHED RESULTS 

 

The results obtained are compared with the published results that uses both black-

box and interpretable techniques. From Table 7, we can see that the classification 

accuracy obtained with the proposed method is on par with the published results and in 

some cases, have performed better than the published results. Since the interactive 

technique is more challenging for classifying data of larger size, we used only automated 

classification for such dataset (APS failure data). The results produced using both 

interactive and automated approach are listed in bold.   

From the results in Table 7, we can clearly see that the accuracies obtained from 

our proposed method is better than black box machine learning models [21, 6, 24] and on 

par with interpretable models [11]. However, the accuracy for APS failure at Scania 

Trucks is slightly lesser compared to the accuracy in [24] using Deep Neural Network, 

which is a black box model. Despite of lesser accuracy, our proposed model is favorable 

due to its transparency, the ability to use the model as self-service and the ability to 

interpret the model by non-technical end users.  
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TABLE 7: Comparison of different classification models. 
Classification Algorithms Accuracy % 

Breast Cancer data (9D) 

Iterative Visual Logical Classifier (Automated) 99.71 

Iterative Visual Logical Classifier (Interactive) 99.56 

SVM [3] 96.99 

DCP/RPPR [16] 99.3 

SVM/C4.5/kNN/Bayesian [20] 97.28 

 

Iris Data (4D) 

Iterative Visual Logical Classifier (Automated) 100 

Iterative Visual Logical Classifier (Interactive) 100 

Multilayer Visual Knowledge discovery [11] 100 

k-Means + J48 classifier [15] 98.67 

Neural Network [21] 96.66 

 

Seeds Data (7D) 

Iterative Visual Logical Classifier (Automated) 100 

Iterative Visual Logical Classifier (Interactive) 100 

Deep Neural Network [6] 100 

K- nearest neighbor [19] 95.71 

 

APS Failure at Scania Trucks (170D) 

Iterative Visual Logical Classifier (Automated) 99.36 

Deep Neural Network (DNN) [24] 99.50 

Random Forest [17] 99.02 

Support Vector Machine (SVM) [17] 98.26 
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CHAPTER VI 

 

CONCLUSIONS 

 

 

With the help of lossless data visualization, we demonstrated the power of 

interpretable data classification techniques that are implemented both interactively and 

automatically. We observed that the interactive data classification technique works well 

for data with lesser cases and dimensions but fail to perform well for data with higher 

number of cases and dimensions. High degree of occlusion was observed and was 

challenging to discover pattern interactively. This issue was successfully addressed by 

our newly proposed automated interpretable technique using Coordinate Order Optimizer 

(COO) algorithm and Genetic Algorithm (GA) where the areas were generated 

automatically rather than interactively.  

We also demonstrated the power of interactive features that improved the 

visualization due to which discovering patterns in the data became much easier. With 

non-linear scaling, zooming and averaging, the visualization was improved to increase 

data interpretability. The SPCVis software successfully visualized the larger dataset using 

SCS. Our proposed techniques can be further leveraged by incorporating more interactive 

features like non-orthogonal coordinates, data reversing etc. SPC and SCS visualizations 

help us to discover only specific patterns in the data and our future goal is to incorporate 

more General line coordinate visualizations and also to provide a medium for visualizing 

thousands of dimensions with millions of data cases.  
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APPENDIX 

 

SPCVIS MANUAL 

 

 

 

SPCVis provides a medium for visualizing multidimensional (n-D) data in SPC 

without losing any information. This system is developed on Windows Forms in C++ 

and OpenGL library. The user can load the data using ‘Upload Data’ option and 

visualize the data in SPC without any loss of information. Apart from the lossless 

representation of the n-D data, the SPCVis also provides user interactive controls like 

clicking and dragging the user selected graphs on the screen and reversing the user 

selected coordinates of the data to reorient the data representation according to user 

convenience. These features help in better understanding of the data, especially when 

the data contain two or more classes. Additional options like zooming and panning are 

provided for user convenience for data exploration. Also, color selection functionality 

is given where the user can customize the color of data classes. The SPCVis software 

can be downloaded from the GitHub repository mentioned in [22]. The screenshot of 

the SPCVis software with WBC data is shown in Figure 34.  
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FIGURE 34: SPCVis software displaying WBC data. 

 

 

Figure 35a displays the implementation of non-linear scaling feature. It is 

implemented using separate sliders for x axis and y axis. Figure 35b displays the user 

interface to enter the k value for non-linear scaling (see Equation 2.1). The output of 

non-linear scaling is displayed in Figure 4. Non-orthogonal coordinate system has a 

coordinate inclined at an angle other than 90 degrees with respect to the other 

coordinate. User interactive implementation of non-orthogonal coordinate is shown in 

Figure 36. This interactive feature is implemented using a button and a text entry box 

where the user can enter the angle at which the inclination is to be displayed. The 

outputs of non-orthogonal coordinates are displayed in Figures 5 and 6. 
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(a) Sliders for performing non-linear scaling. 

 

 

(b) User Interface for entering k value in non-linear Scaling. 

 

FIGURE 35: Implementation of non-linear scaling in SPCVis. 
 

 

 
 

FIGURE 36: User Interface for Non-Orthogonal Coordinates. 
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 The rectangular areas drawn using the option ‘Draw Rectangle’ provided in the 

SPCVis software. This allows the user to draw rectangles on any coordinate pair using 

mouse (In order to draw the rectangles that follow OR logical rule, ensure to check the 

checkbox below ‘Draw Rectangle (Or)’ button after all the rectangles are drawn). See 

Figures 9 -12 for the outputs with rectangles drawn interactively. Use the ‘HD Display’ 

(High Dimension Display) to view the data with higher dimensions. This option can be 

used if data contains more than 30 dimensions (see Figure 7).  
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