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ABSTRACT
AN ECOLOGICAL COMPARISON BETWEEN RESOURCE SUBSIDIES:
PACIFIC LAMPREY (ENTOSPHENUS TRIDENTATUS) AND
PACIFIC SALMON (ONCORHYNCHUS SPP.)
by
Jocelyn Wensloff

May 2021

Historically, oligotrophic Pacific Northwest (PNW) streams received annual
returns of spawning anadromous fish that provided resource subsidies in the form of
marine-derived nutrients (MDN), thus driving stream food web productivity. To date,
many studies in the PNW have focused on Pacific salmon (Oncorhynchus spp.) as a
resource subsidy, overlooking other anadromous fish species such as Pacific lamprey
(Entosphenus tridentatus). Both Pacific salmon and Pacific lamprey are culturally
important to PNW tribes for ceremonial, medicinal, and subsistence purposes, and have
been since time immemorial. Unfortunately, both salmon and lamprey populations are in
decline. Historically, lamprey have been disregarded and actively eradicated by non-tribal
resource managers, and although they have recently been included in restoration
considerations, their role as a resource subsidy is still poorly understood. In order to
better understand how Pacific lamprey can subsidize stream food webs, | used a nutrient
diffusing substrate (NDS) array amended with Pacific lamprey and tule fall Chinook
salmon tissue to compare the basal food web response in the summer and fall, when
lamprey and salmon spawn, respectively. This study was conducted in the upper Yakima

River basin where the Yakama Nation has an active adult lamprey translocation program.



| measured chlorophyll a as the autotrophic food web response and community
respiration (CR) as the heterotrophic food web response. Chlorophyll a responded
equally to lamprey and salmon but was significantly higher in the summer. Alternatively,
CR had a higher response to salmon compared to lamprey and was significantly higher in
the fall. Differences observed in food web response were dictated by season, where
chlorophyll a nutrient response ratios (NRRs) were roughly twice as high as in the
summer and CR NRRs were roughly twice as high as in the fall. Stoichiometric
differences in lamprey and salmon tissue likely facilitated this response and had C:N:P
ratios of roughly 187:37:1 and 60:13:1 respectively. These results indicate that Pacific
lamprey are equivalent to salmon as a resource subsidy for the autotrophic food web in
the summer when lamprey would normally spawn and suggest that increased lamprey

populations will drive stream food webs that support both lamprey and salmon.
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CHAPTERII

INTRODUCTION

Fluvial systems connect landscapes through their unidirectional transport of water
and nutrients from their headwaters, across vastly distant ecotones, and ultimately to the
ocean. The structure and productivity of stream food webs are often dictated by the influx
of resource subsidies from the surrounding landscape (Cummins 1974; Vannote et al.
1980). Resource subsidies are additions of nutrients, organic materials, or organisms,
derived outside of the receiving ecosystem that can increase primary and secondary
production in the receiving ecosystem (Polis et al. 1997). Early studies on resource
subsidies focused on influxes of allochthonous resources via leaf-litter from the
surrounding riparian habitat into streams which provide nutrients (Webster et al. 2000),
and food sources for aquatic macroinvertebrates (Cummins et al. 1989). This initial
understanding of a resource subsidy has since expanded to include resource subsidies in
many forms and across multiple ecosystems. For example, terrestrial organisms can act as
resource subsidies as demonstrated by mass drownings from wildebeest migrations which
can provide up to 1,100 tons of biomass to stream food webs and contribute a large
amount of added nutrients to the system (Subalusky et al. 2017). Although stream food
webs rely on influxes of resource subsidies, they can simultaneously provide a resource
subsidy to the surrounding riparian habitat. For example, during aquatic
macroinvertebrate emergence, the macroinvertebrates can act as a resource subsidy and
dictate where predators such as spiders accumulate in the receiving riparian ecosystem
(Marczak and Richardson 2007). Although these studies have expanded the literature
base for resource subsidies, one of the most commonly studied resource subsidies in the

Pacific Northwest (PNW) are Pacific salmon (Oncorhynchus spp.), which transport
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marine-derived nutrients (MDN) to freshwater systems through their anadromous life
history (Gresh et al. 2000).

Pacific salmon spend their early lives in freshwater, migrate to the ocean to
accumulate biomass, and return to their natal streams to complete their life cycle. As
returning adults, they transport carbon (C), nitrogen (N), and phosphorous (P) subsidies
from the ocean to the receiving freshwater ecosystem (Polis et al. 1997; Lundberg and
Moberg 2003). These subsidies from runs of semelparous salmon provide carcass and
egg material which enter the food web directly through consumption by aquatic
macroinvertebrates (Chaloner et al. 2002), juvenile anadromous (Bilby et al. 1996) and
resident fish species (Kaylor et al. 2020), or terrestrial scavengers such as the American
dipper (Cinclus mexicanus; Tonra et al. 2015), or bears (Ursus spp.; Shakeri et al. 2018).
Alternatively, salmon can contribute indirectly to food webs, where the decomposition of
their post-spawn carcasses releases nutrients which can stimulate the autochthonous
production of benthic biofilms to provide a food source for aquatic macroinvertebrates,
juvenile and resident fish species (Morley et al. 2016; Kaylor et al. 2020), and other
higher consumers (Tonra et al. 2015). In some systems, marine-derived N sources may be
extremely important in stream food webs as some studies have found that **N composes
30-73% of the organismal N in stream consumers after salmon addition (Chaloner et al.
2002; Tonra et al. 2015; Morley et al. 2016).

Unfortunately, many Pacific salmon runs are extinct or declining across their
historic range (Nehlsen et al. 1991), which can directly impact stream food webs. Many
anthropogenic factors have contributed to salmon declines, such as the construction of

hydropower dams, over-fishing, logging, mining, irrigation infrastructure and flow



regulation, and continued urban growth (Nehlsen et al. 1991). Decreased salmon returns
directly impact the MDN influx added to PNW stream food webs, as it is estimated that
only 6-7% of historic salmon MDN are entering these systems (Gresh et al. 2000).
Diminished MDN inputs from anthropogenic impacts can rapidly decrease stream
productivity (Bilby et al. 1996), a process termed cultural oligotrophication (Stockner et
al. 2000). Cultural oligotrophication can elicit a positive feedback loop in which
decreased MDN input decreases stream productivity which decreases juvenile salmonid
survival, which decreases spawner abundance thus decreasing MDN input (Wipfli et al.
1998; Naiman et al. 2002). Understanding this feedback loop and the importance of
salmon as a resource subsidy (see Janetski et al. 2009) has led to multiple responses to
mitigate cultural oligotrophication. For example, from 1999 through 2019 the state of
Washington has invested approximately $1 billion in various projects to improve salmon
populations (WSRC 2020). Additionally, various resource managers have attempted to
offset the positive feedback loop by adding salmon carcasses or artificial salmon carcass
analog pellets directly into salmon-bearing streams (Pearsons et al. 2007; Kohler et al.
2012). This salmon-centric approach has allowed researchers and resource managers to
understand the ecological importance of resource subsidies via annual anadromous
returns; however, less charismatic anadromous species such as Pacific lamprey
(Entosphenus tridentatus) have largely gone unnoticed in terms of their ecological

importance by non-tribal resource managers.



Pacific Lamprey

Pacific lamprey are a member of the ancient jawless fish superclass, Agnatha, and
are a native member of PNW ichthyofauna (Close et al. 1995; Close et al. 2002). They
are an anadromous, semelparous species, that begin their life as larval, filter-feeding
organisms burrowed in fine stream sediment for 3-8 years (Close et al. 2002; Dawson et
al 2015). Once they transform into juveniles (Clemens 2019), they migrate to the oceans
and undergo a parasitic phase for up to 3.5 years (Beamish 1980; Clemens et al. 2010),
accumulating a large amount of MDN before returning to the rivers to spawn. Spawning
generally occurs between April and July (Beamish 1980), however the time spent in
freshwater prior to spawning depends on the specific life history characteristics. Ocean-
maturing Pacific lamprey will spawn within several weeks of re-entering freshwater,
whereas stream-maturing lamprey can hold for up to 2 years in river systems prior to
spawning (Close et al. 2004; Miller 2012; Clemens et al. 2013).

Similar to Pacific salmon, Pacific lamprey contribute to both direct and indirect
food web pathways. Larval or migrating juvenile Pacific lamprey are often cited as a
predation-buffer against migrating salmon (Close et al. 2002; Clemens et al. 2010) due to
their poor swimming ability and high lipid content (Whyte et al. 1993), and they can
stimulate direct food web pathways via predation by sculpin (Cottus spp.), white sturgeon
(Acipenser transmontanus), rainbow trout (O. mykiss) and other consumers (Merrell
1959; Poe et al. 1991; Close et al 1995). Furthermore, as returning adults, they provide
carcass and egg material during and after spawning events, which can further drive direct
food web pathways (Beamish 1980; Close et al. 2002). Alternatively, they can contribute

to indirect pathways during their larval stage where they filter feed and assimilate 30-



40% of the detritus, diatoms, and algae they ingest, thus breaking down larger particles
into sizes that are available for filter feeding aquatic insects (Moore and Mallatt 1980;
Merritt et al. 1984). Additionally, lamprey have a life history such that they could
subsidize stream food webs with MDN similar to Pacific salmon, but there have been
very few studies that have investigated Pacific lamprey as a resource subsidy. Dunkle
(2017) utilized an adapted mechanistic periphyton biomass model to predict that post-
spawn Pacific lamprey carcasses may contribute a small-scale, localized response that
creates a hotspot of food web activity due to the small population and body size of Pacific
lamprey. Moreover, Dunkle et al. (2020) found that complex in-stream habitat can
facilitate this process by contributing to carcass loading at specific locations within the
stream. Although there are limited studies with Pacific lamprey, studies on anadromous
sea lamprey (Petromyzon marinus) in Maine suggest that lamprey may contribute
similarly to indirect food web pathways like salmon, where post-spawn carcasses can
increase downstream biofilms as a food source for aquatic macroinvertebrates and larval
lamprey (Weaver et al. 2016; Weaver et al. 2018a). Furthermore, Hogg et al. (2013)
found evidence of a positive feedback loop where the presence of larval lamprey
increased subsequent spawner abundance and MDN inputs from adult lamprey increased
larval growth rate and survival (Weaver et al. 2018b).

Currently, Pacific lamprey are listed as a species of concern by United States Fish
and Wildlife Service due to declining populations and face a “high risk” of extirpation in
most of the watersheds where they still exist (Renaud 1997; Wang and Schaller 2015).
However, Pacific lamprey populations could historically be found in streams from Japan

to Baja California and were understood to have large populations which could compose



the dominant biomass in some coastal rivers (Kan 1975; Close et al. 2002; Miller 2012).
There is not an agreed quantitative historical estimate, however daytime counts at
Bonneville Dam were as high as 400,000 prior to 1969 although runs in the Columbia
River basin were likely much higher than this as a Nez Perce tribal member reported that
up to 500,000 lamprey were commercially harvested at Willamette Falls alone in the
1800s (CRITFC 2011).

The sharp decline in Pacific lamprey populations is multi-faceted. Pacific lamprey
share many of the same threats as Pacific salmon (Clemens et al. 2017), however other
actions such as systematic extermination and commercial harvest additionally contributed
to the decline. Rotenone treatments were a common method used to rid streams of non-
salmonids during the 1940s-1980s (Close et al. 1995). For example, a 1967 rotenone
treatment in the Umatilla River killed around 1 million fish of varying age groups (Close
et al. 1995), and a 1969 rotenone treatment in the North Fork John Day River killed
33,000 adult Pacific lamprey (Figure 1; ODFW 2002). Although lamprey were actively
exterminated in some basins, there was a commercial harvest at Willamette Falls which
began in 1941, peaked in 1946 with 500,000 adults harvested, and ended in 2001 after
just 12,276 were harvested (Close et al. 1995; ODFW 2002; Close et al. 2009). These
factors are compounded with a general lack of awareness by various resource managers,
and an overall negative bias towards lamprey due to invasive sea lamprey in the Great
Lakes (USFS 2011).

Declines in Pacific lamprey were first noticed by Native American tribal members
along the Oregon coast and inland Columbia River basin (ODFW 2002; Close et al.

2004). Since then, PNW tribes have been at the forefront of Pacific lamprey research,



restoration, and conservation actions. In 2004, the Columbia River tribes organized a
summit where 12 tribes from California, Oregon, and the Columbia River basin along
with federal, state, and local partners committed to conserve this unique species (Wang
and Schaller 2015). These tribes are now collaborating with other governing entities to
spearhead Pacific lamprey research to “...restore natural production of Pacific lamprey to
a level that will provide robust species abundance, significant ecological contributions
and meaningful harvest...” throughout their historic distribution (Yakama Nation

Fisheries 2020).

Tribal Conservation in the Columbia River Basin

Pacific Northwest tribes have a deep cultural connection with Pacific lamprey. In
addition to relying on Pacific lamprey as a source of food, many tribes have used lamprey
for medicinal and ceremonial purposes since time immemorial (Close et al. 1995; Close
et al. 2002). The decline in lamprey populations has directly impacted tribal members’
legal harvest opportunities and ability to maintain traditional ecological knowledge
surrounding this species (Close 1995; Close et al. 2002; Close et al. 2004; Miller 2012).
In order to restore Pacific lamprey populations and maintain the cultural connection,
many PNW tribes have contributed to lamprey restoration and research; however 4
Columbia River basin treaty-tribes in particular have banded together and been
extensively involved in lamprey restoration, conservation, and research within the
Columbia River basin (Figure 1).

In 1977, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR),

the Confederated Tribes of Warm Springs (Warm Springs), the Nez Perce Tribe (Nez



Perce), and the Confederated Tribes and Bands of the Yakama Nation (Yakama Nation)
created the Columbia River Inter-Tribal Fish Commission (CRITFC n.d.a; Figure 1). This
collective body was formed to facilitate and coordinate with local and international
entities to ensure its member treaty-tribes’ fishing rights are maintained into perpetuity
(CRITFC n.d.a). Since the inception of CRITFC, the organization, along with the
member treaty-tribes, have spearheaded many lamprey restoration efforts, and they
actively provide non-tribal entities with invaluable traditional ecological knowledge
regarding historic lamprey distribution, abundance, and ecological role to guide
conservation efforts on their traditional and ceded lands and beyond (CRITFC 2011;
CRITFC n.d.b). In 2011, CRITFC and its member tribes, created a comprehensive
restoration plan, the “Tribal Pacific Lamprey Restoration Plan for the Columbia River
Basin,” dedicated to restoring Pacific lamprey populations in the Columbia River
mainstem and tributaries with targeted goals (CRITFC 2011). This plan intends to halt
Pacific lamprey declines and rebuild healthy populations that allow Pacific lamprey to
fulfill their ecological role while increasing opportunities for tribal members to exercise
their rights to sustainably harvest and maintain traditional ecological knowledge
surrounding this species (CRITFC 2011). Although CRITFC has made historic progress
in terms of lamprey restoration, each member tribe has collaboratively and individually

contributed to increase lamprey populations.
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Figure 1 Ceded lands of Columbia River Inter-Tribal Fish Commission member treaty-
tribes across Washington, Oregon, and Idaho, USA. Clock-wise beginning with the ceded
lands of the Nez Perce Tribe (darkest grey) is the Confederated Tribes of the Umatilla
Indian Reservation, the Confederated Tribes of Warm Springs, and the Confederated
Tribes and Bands of the Yakama Nation. Major rivers and several Columbia River
mainstem dams receiving tribal Pacific lamprey restoration work are shown.

The CTUIR was one of the first treaty-tribes to focus on Pacific lamprey research
and to improve lamprey populations. In 1998, they began including night counts for adult
Pacific lamprey returns at Bonneville Dam to obtain better data about Pacific lamprey
numbers as traditional ecological knowledge suggested that lamprey mainly move at
night when they first re-enter river systems (Close 2000; Close et al. 2004; Miller 2012).
Although there was an 8-year delay before the U.S. Army Corps of Engineers also

included night counts for Pacific lamprey at all of the passage structures on Bonneville



Dam (CRITFC 2011), night counts are now included as a recommendation to improve the
accuracy of lamprey population estimates (Pacific Lamprey Technical Workgroup 2017).
Additionally, in efforts to increase lamprey populations, the CTUIR began a translocation
program in 1999 that successfully transplanted 2,600 Pacific lamprey adults by 2007
(Close et al. 2009). Today, CTUIR and the Yakama Nation lead the way in the
development of artificial propagation methods and have successfully produced thousands
of larvae with outplanting plans that build on their prior successes (CRITFC n.d.b;
Lampman et al. 2016; Lampman et al. 2020; Yakama Nation Fisheries 2020). As a result
of CTUIR efforts, populations of larval and spawning adult Pacific lamprey have
increased in the Umatilla River basin (Close et al. 2009; USFS 2019; Ward et al. 2012).
Similarly, the Warm Springs have been active in many areas of lamprey research
and have contributed to knowledge around lamprey habitat requirements and improving
population estimates. Warm Springs biologists began a study in 2002 dedicated to
determining lamprey species composition, adult abundance, and larval distribution within
the Deschutes River basin in Oregon (Graham and Brun 2004). They found larval
lamprey in 4 of the 13 streams surveyed with larval lamprey presence positively
associated with depositional areas, fine sediment, wood presence, and low stream flows
(Graham and Brun 2004; Graham and Brun 2006). After the 2010 removal of the
Powerdale Dam from the Hood River in Oregon, Warm Springs biologists monitored the
return of Pacific lamprey and later found 1- and 2-year old larvae above the old dam site
(CRITFC n.d.b). From 2010-2016 the Warm Springs biologists worked on improving
estimates of escapement, the portion of a returning anadromous population that avoids

harvest, at Willamette Falls and estimated that an average of 60,689 adults passed the fish
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structures, a 50-60% decline in historic abundance (Baker and McVay 2016; USFS
2019). During this time, Warm Springs also improved estimates for escapement and
abundance at Sherars Falls on the Deschutes River (CRITFC et al. 2018).

The Nez Perce began an active translocation program in 2006 with the goal of
reestablishing self-sustaining lamprey populations in the Snake and Clearwater River
basins, largely in Idaho (CRITFC 2011; Ward et al. 2012). To start this program, they
collected lamprey from dewatered fishways at the Dalles and John Day dams in the
Columbia River, and later also collected lamprey during upstream migration at
Bonneville, the Dalles, and John Day dams (CRITFC et al. 2018). As a result of the
translocation program, spawning and larval lamprey have been documented in Asotin
Creek (Snake River basin) and Lolo Creek (Clearwater basin) where they had not been
detected since the 1980s, and 2004-2006 respectively (CRITFC et al. 2018; Ward et al.
2012). The Nez Perce extended their translocation project to include the Salmon River
basin in 2012 (CRITFC et al. 2018), and as of 2018, the Nez Perce has released 2,805
adult lamprey into the Clearwater, Salmon, and Snake River basins (Poirier 2019).

In 2011, the Yakama Nation and CRITFC organized the first international forum
focused on recovery and propagation of lamprey, and now the Yakama Nation has a
successful artificial propagation program that produces thousands of larval lamprey per
year with the eventual goal of larval outplanting (Greig and Hall 2011; Lampman et al.
2020; Yakama Nation Fisheries 2020). Additionally, the Yakama Nation has an active
translocation project modeled after CTUIR efforts that successfully translocated 15 adults
into Status Creek (Yakima River basin) in 2012 (CRITFC 2011; Yakama Nation

Fisheries 2020). Since then, the Yakama Nation has translocated adult Pacific lamprey
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into the Yakima, Naches, Wenatchee, and Methow rivers (Lampman 2017a; Lampman
2017b; Lampman 2017c). Translocation efforts in the Yakima River basin have included
the upper Yakima basin above Roza Dam, where Pacific lamprey were locally extirpated
(Figure 1). Although Roza Dam is a known Pacific lamprey barrier (Lampman et al.
2014), the Yakama Nation translocated 102 adults above the dam in efforts to restore
populations throughout the Yakima River and began passage improvement on Roza Dam
(Lampman et al. 2015). Larval lamprey release pheromones which can attract spawning
adults (Sorensen et al. 2005; Yun et al. 2011) and are therefore an important mechanism
for improving Pacific lamprey populations. If Pacific lamprey populations increase in the
Yakima River, and throughout the Columbia River basin, they will contribute increased
MDN to these streams and will likely contribute to stream food web productivity (Close

et al. 2002).

Stream Food Web Response to Anadromous Subsidies

Although a resource subsidy benefits the receiving ecosystem (Polis et al. 1997),
environmental conditions can dictate the food web response via changes in the benthic
biofilm. Benthic biofilms are a symbiotic community of autotrophic and heterotrophic
microbiota that convert dissolved water column nutrients and organic matter into
particulate matter that can be transferred to higher consumers, making them an integral
part of the basal food web in stream networks (Cummins 1974; Weitere et al. 2018).
Understanding how biofilms respond to resource subsidies shows the potential for food
web assimilation of the subsidy. After initially increasing in response to a resource

subsidy, biofilms can then decrease due to macroinvertebrate grazing (Claeson et al.

12



2006), or due to scouring from active spawner disturbance (Cak et al. 2008; Janetski et al.
2009). In some cases, the biofilm may not respond at all if light limitation attenuates
demand by autotrophic-dominated biofilms (Ambrose et al. 2004). In most cases, studies
have documented increased benthic biofilms (biofilms) as an initial response to carcass
additions (Wipfli et al. 1998; Fisher et al. 1999; Janetski et al. 2009; Weaver et al. 2016),
particularly if nutrients limit biofilm growth.

Biofilm nutrient limitation status can vary among streams and across seasons
which may influence the initial, indirect food web response, and the autotrophic and
heterotrophic biofilm communities can differ in their response to the same subsidy (Tank
and Dodds 2003; Marcarelli et al. 2009; Hoellein et al. 2010). For example, some studies
have found stream biofilms are typically N and P co-limited and have higher P retention
during the spring (Hoellein et al. 2007; Hall et al. 2002). Similar trends were seen in the
fall, except that some autotrophic communities expressed primary N limitation with
secondary P limitation (Morley et al. 2016). Nutrient limitation in the fall is partly
attributed to the greater addition of leaf litter, which requires a large amount of microbial
processing. For example, Webster et al. (2000) found that by excluding leaf and wood
litter, P and ammonium retention was reduced suggesting that microbial colonization on
the surface of leaf and wood litter outcompeted other heterotrophic processes such as
fungal biomass accumulation (Tank and Webster 1998). The nutrient requirements by
microbes during leaf decomposition may help explain why coho salmon (O. kisutch)
carcasses alleviated autotrophic communities, despite all but 1 heterotrophic community

remaining mostly P limited (Rulegg et al. 2011). This suggests that the elemental
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composition of the resource subsidy in combination with the stoichiometric demand of
biofilms can further influence the food web response.

Anatomical differences between Pacific lamprey and salmon may contribute to
stoichiometric differences in the resource subsidy that may influence the food web
response. For example, salmon and other teleost fish, have calcified bones which can
hold up to 40% of organismal P, whereas lamprey are composed of cartilage and keratin
which are lower in P (Parmenter and Lamarra 1991; McPhail 2007). Prior to my study,
the elemental composition of Pacific lamprey was unknown, however Weaver et al.
(2015) reported sea lamprey in Maine were composed of 54% C, 11.2% N, and 1% P,
and had a C:N:P molar ratio of 207:30:1. Although Pacific salmon molar ratios vary by
species, Riegg et al. (2011) reported unpublished data from D. Chaloner that estimated
pink salmon (O. gorbuscha) to have a molar ratio of 139:24:1. Molar ratios may
ultimately determine how the autotrophic or heterotrophic community may benefit from
added nutrients based on the stoichiometric demand of consumers (Elser et al. 1996).

Although both Pacific lamprey and Pacific salmon share anadromous life histories
and similar distributions (Wicks-Arshack et al. 2018), they differ in the seasonal timing
of their life histories which may influence nutrient delivery and stream food web
response. For example, Pacific lamprey typically spawn from April through July when
biological activity is beginning to increase from warming temperatures and increased
light availability (Beamish 1980; Crandall and Wittenbach 2015). Alternatively, Pacific
salmon, although there are some variations, typically spawn in the fall and winter at a
time with less biological activity due to cooler temperatures and less light availability

(Wydoski and Whitney 2003). Therefore, it is possible that resource subsidies from
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spawning timing differences influence fungal biomass, bacterial density, or stable isotope
(8'3C and 8'°N) enrichment of biofilms (Samways et al. 2015). Moreover, lamprey are
smaller than salmon; Pacific lamprey can reach 70 cm in length and can weigh as much
as 453.5 g whereas Pacific salmon typically range from 50-92 cm and weigh anywhere
from 1800-10,000 g on average depending on the species (Wydoski and Whitney 2003).
The drastic differences in fish sizes may alter the quantity of nutrients delivered to
streams in runs of equal numbers.

Given the large amount of money being invested to improve salmon returns, and
the simultaneous increased attention around Pacific lamprey, it is important to understand
how seasonal timing of lamprey life history will influence the food web response. For
example, as the Yakama Nation works to increase Pacific lamprey populations in the
upper Yakima River basin, an area that has not had Pacific lamprey for several decades, it
is important to understand how the added MDN will influence the stream food webs.
Understanding how autotrophic and heterotrophic biofilms respond to lamprey tissue
compared to salmon will help predict the indirect food web response to lamprey
restoration efforts. This will allow resource managers, the Yakama Nation, and other
tribes to gain greater insight into how lamprey restoration efforts might impact stream

food webs in the upper Yakima basin and similar oligotrophic systems.

Study Questions and Hypotheses

This study sought to elucidate the role of Pacific lamprey as a resource subsidy
compared to Pacific salmon. This was done by comparing the stream biofilm response to

lamprey and salmon tissue in streams above Roza Dam, and how that response varied by
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environmental and seasonal factors, and by differences in the elemental composition of
fish species. In this study, | aimed to answer: 1) Are streams in the upper Yakima River
basin nutrient limited, and how does nutrient limitation change seasonally? 2) Do
autotrophic and heterotrophic biofilms respond differently to salmon and lamprey
compared to added nutrients? 3) Do stream biofilms respond similarly to lamprey and
salmon tissue, and does the response differ between summer and fall? 4) What is the
elemental composition of Pacific lamprey compared to Pacific salmon? 5) Can seasonal
differences in stream temperature, light availability, and canopy cover predict stream
biofilm response?

Given the oligotrophic conditions of the upper Yakima basin, | hypothesized that
the streams would be nutrient-limited, especially in the summer when more light activity
may stimulate nutrient demand via autotrophic biofilms. I expected biofilm communities
to respond similarly to nutrient and fish tissue treatments; however, 1 did not expect a
difference in biofilm response between lamprey and salmon treatments. Due to the
presence of bones in salmon, | expected Chinook salmon to have higher P content than
lamprey, but I did not expect a difference in nitrogen or carbon content. Finally, |
expected that season will be the primary predictor in biofilm response given that light

availability and temperature are largely controlled by season.
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CHAPTER I

METHODS
Site Selection and Study Design

| selected five study sites in the Upper Yakima River basin in Kittitas County
(Figure 2). Sites were selected on the Yakima River, Teanaway River, Swauk Creek,
Taneum Creek, and Manastash Creek. Locations at these sites were selected based on
accessibility, riparian canopy openness, lack of a passage barrier, and similarity to
suitable Pacific lamprey spawning grounds defined by median substrate size (median =
27 mm, Stone 2006; median = 24 mm, Gunckel et al. 2009). Open canopy sites were
given preference in order to reduce any potentially confounding influence of light-
limitation on autotrophic biofilm growth when comparing the food web response among
study sites (Ambrose et al. 2004).

At each site, | measured the seasonal change in nutrient limitation of autotrophic
and heterotrophic benthic biofilms using a nutrient diffusing substrate (NDS) array. In
2020, | deployed NDS arrays from 06 June to 04 August (summer) and from 02 October
to 10 November (fall). Summer months were selected based on typical lamprey spawning
periods (Close et al. 2002), however COVID-19 setbacks delayed my earliest sampling
until June; fall months were selected based on typical salmon spawning periods in the
Yakima basin (YYakama Nation 2019). The seasonal separation also allowed a comparison
between two distinctly different “metabolic” time periods in these streams: summer when
autotrophic metabolism was expected to dominate in the high light conditions, and fall
when heterotrophic metabolism was expected to dominate due to leaf litter inputs and

increased shading.
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| measured general stream habitat characteristics to further explain the biofilm
response. | estimated canopy openness using a spherical densiometer (Spherical Crown
Densiometer, Convex Model A, Forestry Suppliers; Jackson, MS, USA), and | measured
stream velocity using a portable flow meter (Flo-Mate 2000, Marsh McBirney; Loveland,
CO, USA) to calculate discharge at a representative channel cross-section. Additionally,
during NDS deployment and retrieval, | measured in situ temperature and dissolved
oxygen using a portable, handheld YSI (YSI ProODO, YSI Inc.; Yellow Springs, OH,
USA), and | collected water samples for stream ammonium (NH4") , nitrate (NO3),
soluble reactive phosphorous (SRP), and dissolved organic carbon (DOC) concentrations.
| also measured photosynthetically active radiation (PAR; Odyssey Photosynthetic Active
Radiation Logger, Dataflow Systems Inc.; Christchurch, New Zealand) as pulses s* at
one-minute intervals during several representative days at each site during NDS
deployment. Finally, during the summer NDS deployment, | calculated median substrate
size from the cumulative substrate measured along the intermediate axis (n =100 per site)
via a Wolman Pebble Count (Wolman 1954). In contrast to all other measurements which
occurred in both seasons, substrate was measured only in the summer because there was
no sediment-mobilizing stream discharge between summer and fall deployment, so a

change in median substrate size was not expected.
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Figure 2 Map of study sites located in the upper Yakima River basin in Kittitas County,
Washington. The inset map shows the location of study sites relative to the Yakima River

basin (shown in grey outline in the inset map) in Washington, USA.
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Preparation of Salmon and Lamprey NDS Treatments

In order to use fish tissue for NDS treatments, | received 22 sexually mature
Pacific lamprey carcasses (both pre- and post-spawn) from the Yakama Nation. Although
| had hoped to acquire coho salmon carcasses because they normally spawn during the
fall when | deployed NDS, they were unavailable. Instead, | received 9 pre-spawn tule
fall Chinook (O. tshawytscha) carcasses from U.S. Fish and Wildlife Service.
Additionally, in order to examine if the elemental composition of the stream-maturing
ecotype might change from the time of re-entry to the time when they spawn (due to the
potential for altered stoichiometry to influence biofilm activity), the Yakama Nation
provided 6 stream-maturing ecotype lamprey carcasses that had recently returned to the
Columbia River system (fresh migrants). Individual whole carcasses were homogenized
and combined with all other individuals of the same species and migration status to create
three separate fish treatments for NDS arrays: salmon (+salmon, n = 9), sexually mature
lamprey (+ lamprey, n = 22), and fresh migrant lamprey (+fresh migrant, n = 6)
treatments.

For the lamprey preparation, individual whole lamprey carcasses were weighed
and homogenized using a commercial grade food processor. Female lamprey carcasses
included the eggs that remained after a subsample of eggs was removed for separate
elemental analysis (described below), but some carcasses in the NDS lamprey treatment
were post-spawn. Salmon heads were removed anterior to the operculum and were not
homogenized due to lack of necessary equipment. The skeleton and caudal fin were
homogenized in a scientific blender with milliQ water (MQ = 18.2), then added to the

remaining tissue, which was homogenized in a commercial grade food processor. Salmon
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and sexually mature lamprey treatments were included in each NDS array deployed in
both seasons at all sites. However, the fresh migrant tissue was only included in a single
summer deployment in Swauk Creek in order to compare biofilm response to fresh

migrant lamprey tissue and sexually mature lamprey tissue.

Nutrient Diffusing Substrata

| used NDS arrays to measure stream nutrient limitation status and response to
added nutrients following methods outlined by Tank et al. (2017). Nutrient diffusing
substrata were composed of 0.5 M nutrient solutions in a 2-4% agar gel (based on number
of solutes) poured into 30 mL polyethylene plastic cups. Nutrient diffusing substrate
nutrient treatments included a 2% agar used for the control (agar only), +N (ammonium
chloride), +P (potassium monobasic phosphate), and +C (glucose), 3% agar used for
+N+P (ammonium and phosphate), +N+C (ammonium and glucose), and
+P+C (phosphate, and glucose), and 4% agar used for +N+P+C (ammonium, phosphate,
and glucose). Each treatment was topped with either a porous glass disk which selects for
the autotrophic community (Tank and Dodds 2003), or a cellulose sponge disk which
selects for the heterotrophic community (Johnson et al. 2009).

Salmon and sexually mature lamprey tissue were included as 2 additional NDS
treatments that differed in preparation. The first treatment was 2% agar amended with
either 3 grams of homogenized mature lamprey tissue (+lamprey, LA) or salmon tissue
(+salmon, SA) in a 10% w/v mixture (Ruegg et al. 2011). Based on elemental analysis
(described below), LA had concentrations of 4.36 mol C/L, 0.87 mol N/L, and 0.03 mol
P/L, and SA had concentrations of 4.16 mol C/L, 0.93 mol N/L, and 0.07 mol P/L. The

second tissue treatment was composed of approximately 25 mL of ground lamprey (LT)

21



or salmon (ST) tissue, bound in a nylon stocking that had been soaked in milliQ water for
24 h and placed in the polyethylene NDS cup. Both tissue treatments were also topped
with a porous glass disk or cellulose sponge in a fully crossed design. Additionally, fresh
migrant tissue was included as an agar (FMLA) and a tissue in nylon (FMLT) treatment
in a single summer deployment in Swauk Creek. As my study progressed, | began to run
out of mature lamprey tissue, so | added 2 additional sexually mature pre-spawn lamprey
carcasses provided by the Yakama Nation to the previously homogenized sexually
mature lamprey tissue and included them in the fall LT treatment for Teanaway and
Swauk deployments. Elemental analysis found no difference in elemental composition
between mature and fresh migrant tissue, so adding new individuals to the lamprey
treatments for two streams was unlikely to introduce excessive variation compared to the
initial lamprey treatments.

To assemble the NDS arrays, treatments were randomly placed on L-bars (n =8
bar™) and secured with waterproof silicone and zip ties (Figure 3). Each treatment (n = 11
treatments) was replicated 5 times with each top (glass or sponge) per deployment, and
these arrays were deployed in each of the 5 study streams (n =110 cups per stream,
Figure 4). Deployments were replicated in summer and fall (n = 550 season'), and each
deployment lasted 11-15 days, a length of time sufficient to colonize biofilm based on
prior studies in this area (C. Arango, unpublished data).

Nutrient diffusing substrate arrays were deployed with a minimum of 1 day
between deployments to allow 24 hours after retrieval for processing the NDS tops. After
retrieval, net primary production (NPP) and community respiration (CR) were measured

in the laboratory using a modified light-dark bottle method (Tank et al. 2017; Tank and
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Dodds 2003). First, NPP (ug O, cm h') was measured by incubating filters in the light
and measuring the change in dissolved oxygen, then CR (ug O2 cm? h't) was measured
by incubating filters in the dark and measuring the change in dissolved oxygen. Gross
primary production (GPP; ng O, cm h't) was then calculated by adding NPP and the
absolute value of CR (Tank et al. 2017: Johnson et al. 2009). These values represent the
stream biofilm metabolic activity of autotrophs (GPP) and heterotrophs (CR) in response
to the various nutrient and tissue treatments. Negative values of GPP and positive values
of CR were excluded from the analysis.

After the light/dark bottle incubation, glass filters were frozen until NDS
processing was complete for each season whereupon chlorophyll a biomass (ug cm)
was measured using a hot ethanol extraction method (Sartory and Grobbelaar 1984) as an
additional autotrophic food web response to the NDS treatments. The disks were placed
in a plastic centrifuge tube with 10 mL of 95% ethanol buffered with MgClz. The tubes
were then heated to 79°C for 5 minutes, mixed, and measured within 24 hours. Samples
were then analyzed fluorometrically using a Turner Designs benchtop fluorometer
(Trilogy Laboratory Fluorometer, Turner Designs; Sunnyvale, California, USA) at

excitation and emission wavelengths (1) of 436 nm and 680 nm.
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Figure 3 Nutrient diffusing substrate array for a single stream prior to deployment. Each
treatment (nutrient and filter top; white top = porous glass, yellow top = cellulose sponge)
was randomly placed on an L-bar and secured with silicone and zip-ties. The color of the

plastic cup does not indicate any difference in treatment. Each treatment is replicated 5
times per filter top.
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Figure 4 Nutrient diffusing btrate array delyed in the Yakima River in June 202.
The L-bars were secured in the stream with rebar stakes at the upstream end.

Water Quality

To understand how background stream nutrient levels influenced the biofilm
response, water quality samples were collected by filtering site water through a glass
fiber filter (1.0 um pore size) into an acid-washed HDPE bottle rinsed with filtered site
water. Water samples were stored on ice until | returned to the lab, at which point they
were frozen for later analysis of NH4*, NO3", SRP, and DOC. Ammonium was measured
with the fluorometric method (Taylor et al. 2008) using a Turner Designs benchtop
fluorometer at excitation and emission wavelengths (1) of 350 nm and 410 nm. Nitrate

was measured using the cadmium reduction method (Brewer and Riley 1965) and SRP
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was measured using the molybdate method (Murphy and Riley 1962), both using a Seal
AQL1 Discrete Analyzer (Seal AQ1, Seal Analytical; Mequon, Wisconsin, USA). The
cadmium reduction method combines nitrite (NO2") and NOgz", but since NO>™ is usually
below detection, hereafter we refer to these values as NO3". For DOC analysis, samples
were acidified to pH < 2 to purge inorganic carbon, and then measured with the infrared
method (APHA 2017) using a Shimadzu TOC-L autoanalyzer (TOC-L Total Organic

Carbon Analyzer; Shimadzu, Kyoto, Japan).

Elemental Composition and Stable Isotopes

Prior to homogenizing fish carcasses to create the 3 separate NDS treatments, a
subsample of ground individual carcass tissue, homogenized within individual, was
collected for elemental composition and stable isotope analysis. These samples were
collected from 10 of the least deteriorated mature lamprey carcasses (n = 5 pre-spawn
female, n = 5 male of which 3 were post-spawn and 2 pre-spawn), 5 pre-spawn male
salmon, and 6 fresh migrant lamprey (n = 3 female, n = 3 male; Table 1). | was unable to
compare male and female salmon due to the limited availability of sexes in the salmon
carcasses. Finally, a sample of Pacific lamprey eggs was collected from each sexually
mature female lamprey and included as distinct tissue samples in elemental analysis (n =

5).
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Table 1 Lamprey and salmon tissue samples used in elemental composition and

NDS treatments.
Carcass Tvbe Sex Elemental NDS Total
yp Composition  Treatment n
Female 5* 15
S Ily Mature L 22**
exually Mature Lamprey Male 5 7
Female 3 3
Fresh Migrant Lampre 6
'g prey Male 3 3
Salmon Male 5 4 9

*A sample of eggs were taken from each sexually mature female lamprey and

included as a sample for elemental composition.

**Once the sub-sample for elemental composition was collected the remaining

homogenized tissue was added to the NDS treatment, therefore “NDS Treatment”

count includes carcasses in “Elemental Composition” count.

To analyze elemental and stable isotope composition, tissue samples were dried at
60°C until a constant weight was achieved, usually 24-48 hours (Weaver et al. 2018a).
Samples were then ground by hand using a mortar and pestle, weighed into 1.0-1.5 mg
subsamples, and sealed in tin capsules. Three analytical replicates per individual were
sent to Washington State University’s Stable Isotope Core Laboratory in Pullman, WA to
analyze the % C, % N, 8'3C, and 5'°N composition. Isotope samples were converted to
N2 and CO> using an elemental analyzer (ECS 4010, Costech Analytical; Valencia,
California, USA) and measured using a continuous flow isotope ratio mass spectrometer
(Delta PlusXP, Thermofinniganm; Bremen, Germany). Lipids in tissue samples can
negatively bias $*3C values (Focken and Becker 1998). To mitigate this, | included an
additional sample from each individual which received a Soxhlet/lipid extraction wash to

provide a lipid correction factor to 5'C values from the 3 analytical replicates (Anthony,

Roby, and Turco 2000). Hereafter, only lipid corrected values are reported. Stable isotope
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ratios of N and C are expressed in parts per thousand or per mil (%o) and are calculated
as:

SN or 818C = ([Rsample — Rstandard] / Rstandard) * 1000
where R is the ratio of ®N:*N or *C:'?C. The isotopic composition of air and Vienna
Peedee Belemite were used as standards for N and C respectively. Additionally, two
analytical replicates per individual were sent to University of Idaho’s Analytical Sciences
Laboratory for phosphorous analysis where samples received a nitric acid digestion
followed with inductively coupled plasma optical emission spectroscopy (Optima 8300

ICP-OES, PerkinElmer; Waltham, Massachusetts, USA).

Statistical Analysis

All data analyses were performed using R 4.0.3 (R Core Team 2020). Habitat and
water quality data were compared between seasons using a paired Mann-Whitney U test
due to small sample size. PAR data was collected for an unequal number of days at each
site during the NDS deployments; therefore, PAR was ranked from highest to lowest
from 1-10 (Table 3) based on the average pulses s over deployment duration and used as
a predictive variable in models relating habitat parameters to stream biofilm response to
added nutrients.

Nutrient limitation status of GPP, CR, and chlorophyll a was determined by a
multi-factor analysis of variance (ANOVA) with the presence or absence of each nutrient
as a main factor (Tank and Dodds 2003; Tank et al. 2017). Only presence or absence of N
and P were included as main factors for GPP and chlorophyll a as I did not anticipate

autotrophs to benefit from added organic carbon due to their ability to photosynthesize
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and store carbon compounds (Everson et al. 1967). When necessary, data were
transformed to meet the assumptions of ANOVA, and if transformation did not help the
data meet model assumptions, untransformed data were used in a nonparametric factorial
analysis via the aligned rank transformation (ART; Wobbrock et al. 2011) in the ARTool
package (Kay and Wobbrock 2016). If a single factor or interaction was significant, I
used interaction plots to evaluate nutrient limitation status.

Pearson or Spearman correlations were used to determine how well the tissue
treatments in agar alleviated nutrient limitation compared to the added nutrients in agar
according the methods outlined in Riegg et al. (2011). The +N+P treatment was used in
the autotrophic comparison, whereas the +N+P+C treatment wasused in the heterotrophic
comparison. Because primary productivity was extremely low in the fall and many GPP
calculations were 0, chlorophyll a was used as a proxy for autotrophic activity in all
autotrophic-heterotrophic comparisons when season was a factor. To compare the
autotrophic (chlorophyll a) and heterotrophic (CR) biofilm response to salmon and
lamprey directly, | used an ANOVA with species interacting with treatment (i.e., tissue in
agar versus tissue in nylon) and blocked by season. In a separate analysis restricted to the
Swauk Creek summer deployment, | used a one-way ANOVA to compare calculated
GPP, chlorophyll a, and CR response to fresh migrant (just arrived in the Columbia
River) and mature (arrived on spawning grounds) lamprey tissue to understand how
tissue from different stages of migrating lamprey influenced biofilm response. |
compared the elemental composition and stable isotopes of mature lamprey and salmon,
and among different lamprey tissue samples (sexually mature male, sexually mature

female, fresh migrant male, fresh migrant female, and eggs) using an ANOVA or
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Kruskal-Wallis test depending on whether or not data met assumptions for a parametric
analysis as described below.

Linear mixed effects models, using “Ime” function in the “nlme” package
(Pinheiro et al. 2021), were used to predict how environmental variation (i.e., PAR,
stream temperature, canopy cover, background nutrients, and season) influenced the
biofilm response (chlorophyll a or CR) to the added nutrients, lamprey, and salmon
treatments. For the models, biofilm response was quantified as the nutrient response ratio
(NRR), which is the response to a given treatment relative to the response on the control
within each stream+season which allows comparisons among streams and between
seasons (Tank and Dodds 2003; Johnson et al. 2009). Tissue in agar was used as opposed
to the tissue in nylon in order to compare explanatory variables to the nutrient treatments.
Site was modeled as a random effect, and explanatory habitat characteristics were
modeled as fixed effects (Table 2).

Data were tested for equal variance using Levene’s test, in the “car” package (Fox
Weisberg 2019), and data was tested for normality using the Anderson-Darling test in the
“nortest” package (Gross and Ligges 2015). All data were transformed where appropriate
in order to meet model and analysis assumptions, and the significance of all statistical

tests was determined at oo = 0.05.
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Table 2 Variables used in linear mixed effects models to best explain chlorophyll a and
CR. PAR = photosynthetically active radiation, DIN = dissolved inorganic nitrogen, N =
nitrogen, P = phosphorus, C = carbon, DOC = dissolved organic carbon.

Response Random Effect
Chlorophyll a Site
Community respiration

Fixed Effect

Discharge (m®/s) Phosphate
PAR DIN
Canopy openness (%) Molar N:P
Season Molar C:N
Temperature (°C) Molar C:P
DOC
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CHAPTER 11

RESULTS

Study Sites

Median substrate size, temperature (°C), dissolved oxygen (mg/L), stream
discharge (m®/s), PAR, and canopy openness (%) varied among sites but not between
seasons. Median substrate size ranged from 31-77 mm (Figure 5). Temperature ranged
from 12.25-23.75°C in the summer and 4.85-13.50°C in the fall, but the difference
between seasons was not significant (Mann-Whitney U test, p = 0.1), and there was no
seasonal difference between dissolved oxygen (Mann-Whitney U test, p = 0.1; Table 3).
Discharge did not vary seasonally (Mann-Whitney U test, p = 1); however, relative to the
other discharge measurements, Yakima was an outlier in the summer, and Teanaway was
an outlier in the fall (Table 3). The 5 highest PAR ranks occurred in the summer, whereas
the lowest occurred in the fall, albeit the difference was not significant (Mann-Whitney U
test, p = 0.06). Percent canopy openness did not differ between seasons (Mann-Whitney
U test, p = 0.4) and had low variability among sites (Table 3). There was no seasonally
significant difference between NH4*, NO3", SRP, DOC, or molar N:P, C:N, or C:P

(Mann-Whitney U test, p > 0.05; Figure 6).
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Table 3 Habitat characterization of study sites. Temperature (Temp) and dissolved
oxygen (DO) were measured during the deployment and retrieval of NDS arrays, and site

average (1 standard error) is reported. Discharge and canopy openness were only

measured during NDS deployment. Photosynthetically active radiation (PAR) was
measured as a proprietary unit (pulses s™) and reported here as rank data, 1= high, 10 =

low

Season Site T((irg;o (rr?g(/)L) g /?) Di(srsgzgge PAR OC pje(:];(?;%);s

Taneum (115.455(; (gig) Sg;;) 0.46 1 100

Manastash (10§59553 (ggg) (9051475) 0.93 3 99

Summer  Yakima (102.52553 1(8 g’ (90%'159(; 451 2 95

Teanaway (223?4755) (gig) (864112) 0.90 4 99

Swauk 2(32;3 é:ié) 1(892';;3 0.12 5 100

Taneum 1(‘;’3;) (g:gg) (904'4735) 0.79 6 99

Manastash ?401(; 1((1)?5' (90?592(; 0.70 7 99

Fall  Yakima l(i;;) (%é) (8.12.82) 0.15 9 100

Teanaway (ggg) (101_'1758) (832‘712) 3.53 8 96

Swauk (gsgg) (101_595% (8_32'32) 0.27 10 100
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Figure 5 Cumulative substrate (n =100) measured along the intermediate axis, and
median (dashed line) for a) Taneum, b) Manastash, ¢) Yakima, d) Teanaway, and €)

Swauk.
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Nutrient Limitation Status

Autotrophic nutrient demand shifted seasonally. In the summer, both GPP and
chlorophyll a were N limited in 4 out of 5 sites. Gross primary production was not
limited at Swauk Creek and chlorophyll a was N+P co-limited at Teanaway. In the fall,
there was a shift towards no limitation, or an increase in the importance of P as a limiting
nutrient. GPP was not limited in 4 out of 5 sites but was N limited in Teanaway although
productivity was extremely low in all sites which resulted in a heavily zero-skewed GPP
dataset. Surprisingly, GPP was inhibited by N at 3 sites and by P at 1 site during the fall.
Chlorophyll a was N limited at Manastash and Yakima, N+P co-limited at Taneum and
Swauk, and not limited at Teanaway (Figure 7).

Compared to patterns revealed by autotrophic metrics, heterotrophic limitation
was more varied among sites and between seasons. In the summer, all sites were N
limited except for Yakima which was N+C co-limited. Interestingly, C appeared to
inhibit CR in Teanaway in the summer. The incidence of C and/or P limitation increased
in the fall when Taneum, Manastash, and Swauk were N+P+C co-limited, Teanaway was

C+P limited, and Yakima was C limited (Figure 7).
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Figure 7 Nutrient limitation for gross primary production (GPP), chlorophyll a (Chl a),
and community respiration (CR) for all 5 study sites in summer and fall. Limitation was
either by N = nitrogen, P = phosphorous, C = carbon, or some combination, or was not
limited by any nutrient used in the NDS (None).

Biofilm Response to Nutrient and Tissue Treatments

Tissue and nutrients relieved biofilm nutrient limitation, but the autotrophic food
web response to either treatment was inconsistent for GPP and chlorophyll a. Biofilm
NRR for GPP from the tissue in agar (LA and SA) was generally not correlated with the
added nutrients (+N+P). The only significant GPP correlation between +N+P treatment
and tissue was with SA in the fall (r = 0.59, p = 0.004), but this was likely driven by the
heavily zero-skewed GPP values as it was not correlated with LA in either season or with
SA in the summer (Figure 8).

Unlike GPP, NRR for biofilm chlorophyll a in response to salmon and lamprey
was generally correlated with the NRR of the added +N+P. Both LA and SA were
positively correlated to the +N+P treatment in the summer (r_a = 0.39, pLa = 0.04905;

rsa= 0.68, psa< 0.001), but not in the fall (Figure 8). Interestingly, there were several
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instances where the +N+P treatment elicited a higher response than either tissue
treatment (summer NRR was 10-15 for nutrients versus < 10 for tissue). The higher mean
NRR for chlorophyll a suggests that algal biomass does not necessarily scale with
autotrophic productivity measured as GPP.

The NRR for biofilm CR from the added tissue was generally correlated with
NRR from the +N+P+C treatment. The LA treatment was correlated to the +N+P+C
treatment in the summer (r = 0.59, p = 0.003, Figure 8), but not in the fall, whereas SA
was correlated in both the summer (r = 0.61, p = 0.002, Figure 8), and fall (r=0.41, p =
0.04, Figure 8). Interestingly, both LA and SA elicited a consistently higher response

than +N+P+C in both seasons, a trend not seen in the autotrophic response (Figure 8).
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Figure 8 Correlation plots comparing nutrient response ratios (NRR) of tissue (LA =
lamprey in agar, top row; SA = salmon in agar, bottom row) to added nutrient treatments
in agar across seasons. Gross primary production (GPP) and chlorophyll a (Chl a)
response to tissue treatments are compared to the +N+P treatment whereas community
respiration (CR) response to tissue is compared to the +N+P+C treatment. The dashed
line is the 1:1 line. Correlations performed with a Pearson’s correlation are indicated with
(P) next to test statistics, other correlations are Spearman’s rank correlation; significant p-
values are bolded.

Biofilm Response to Lamprey and Salmon Tissue Treatments

When comparing the seasonal response of chlorophyll a to lamprey and salmon

tissue in different treatments (agar versus nylon), | found that season was a better

predictor than either tissue type or treatment. There was no difference in chlorophyll a

response between lamprey and salmon, or between tissue in agar and tissue in nylon in

either summer or fall. However, chlorophyll a was significantly higher in the summer

compared to the fall (ANOVA, p = 0.001; Figure 9) where mean NRRs were roughly
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40% higher. In contrast, CR was higher in the fall compared to the summer (ANOVA, p
< 0.001; Figure 10a), where mean NRRs were roughly 60% higher. CR had a higher
response to salmon compared to lamprey, and the tissue in nylon treatment elicited a
higher response than the tissue in agar treatment (ANOVA, Pspecies X Amendment = 0.04,

Figure 10b).

Species: p=0.1
1251 a) Amendment: p=0.1
Season: p=0.001
Species X Amendment p=0.5

p—

=

[=]
L

b)

=d
un
L

3.01

Chl a Nutrient Response Ratio

0.0 : .
Summer Fall
Season

Figure 9 Seasonal nutrient response ratio (NRR) of Chlorophyll a to different fish
treatments (lamprey and salmon) and amendment type (tissue in agar and tissue in nylon)
blocked by season (summer and fall). Means indicated by dashed line. Bolded p-values
indicate significance at « = 0.05.
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Figure 10 Seasonal response of community respiration (CR) nutrient response ratio
(NRR) to different fish treatments (lamprey and salmon) and amendment type (tissue in
agar and tissue in nylon) blocked by season. Bolded p-values indicate significance at o =
0.05. a) boxplot showing CR response to seasons; means indicated by dashed line; b)
interaction plot showing CR response to tissue type and amendment.
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Although upstream dam passage may not result in high lamprey mortality, pre-
spawn mortality can still occur in river systems prior to spawning (Keefer et al. 2020),
therefore it is possible that stream maturing lamprey elemental composition could differ
from the time of fresh water re-entry to the time they spawn, potentially and influencing
the biofilm response. To test this, I included fresh migrant lamprey tissue in the Swauk
summer NDS deployment to determine if the nutrients in the different migration stages
(fresh migrant versus sexually mature) influenced the ecosystem response. However, this
comparison revealed no difference in autotrophic response (ANOVA, pepp = 0.3, Pchia =
0.1) to sexually mature or fresh migrant lamprey, and no difference in tissue in agar or
tissue in nylon (Figure 11). Moreover, there was no significant difference in CR response
between fresh migrant tissue or sexually mature tissue (Figure 11), but CR was
significantly higher in fresh migrant in agar compared to fresh migrant in tissue

(ANOVA, p =0.02, Figure 11).
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Figure 11 Gross primary production (GPP), chlorophyll a (Chl a), and community
respiration (CR) response to fresh migrant and sexually mature lamprey tissue in Swauk
Creek in the summer nutrient diffusing substrate deployment. Dashed lines indicate
mean; tukey letters indicate significant differences.
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Elemental Composition and Stable Isotopes

Salmon tissue was composed of 2.0-2.5% P, significantly more than mature
lamprey which ranged from 0.4-1.0% P (ANOVA, p < 0.001, Table 4). Lamprey eggs
were composed of approximately 1.3-1.4% P, however this was not significantly different
from sexually mature pre-spawn female lamprey (Kruskal-Wallis, p = 0.1). There were
no significant differences in salmon and lamprey % C or % N, which ranged from 48.5-
54.4% C, and 10.8-14.2% N (Kruskal-Wallis, pcarbon = 0.06, pnitrogen = 0.1). Despite no
observed differences in % C and % N between the two species, on average, tule fall
Chinook salmon weighed 1774.7 g, whereas a sexually mature lamprey weighed 252.4 g
respectively. Therefore, the salmon tissue had 49959.2 mg/kg C, 13025.5 mg/kg N, and
2170.0 mg/kg P, which is approximately 6.6 times more C, 7.7 times more N and 19.2
times more P than the lamprey tissue, due to higher body mass and the presence of bones
in salmon (Table 4). Fresh migrant and sexually mature lamprey did not vary in
elemental composition. Fresh migrant lamprey was composed of approximately 65.3-
66.7% C, 5.3-6.4% N, and 0.3-0.4% P compared to 48.4-59.6% C, 8.8-14.2% N, and 0.4-

1.0% P for sexually mature lamprey (Table 4).
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Table 4 Sample size, mean (standard error) aggregated mass of fish, mass of carbon (C),
nitrogen (N), and phosphorous (P), as well as molar C:N, and molar N:P. “Avg. Mature”
is the average of 5 mature male and 5 mature female lamprey, and “Avg. Migrant” is the
average of the 3 fresh migrant male and 3 fresh migrant female lamprey.

Mass C N P

(@  (mgkg) (mgkg) (mgkg) =N N:P

Tissue Type n

17747 49959.2 130255  2170.0
(109.3) (525.2)  (169.5)  (93.0)

(6]

Salmon 45(0.1) 13.4(0.4)

238.7 51539.6 127635  694.0
MatureM 5 0% oo ozan) (b 4907 426(62)

266.1 53097.1 11669.8  867.0
MatreF 5 e ss10)  (4104)  (67.0) 5302 30937

351.0 661646 58312  358.3
(19.6) (386.7) (325.0)  (19.6)

. 416.3 65958.3  6001.5 435.0
Migrant F 3 (480)  (402.9) (213.5) (7.6) 13.3(0.8) 36.2(2.7)

Migrant M 3 12.8 (0.5) 30.5(0.7)

2524 523184 12216.6 780.5

Avg.Mare 10 22)  (1045.4) (5526)  (545)

51(0.4) 36.7(3.9)

. 383.6 660614  5916.3 396.7
Avg. Migrant 6 (27.4)  (254.0) (178.0) (19.6) 13.1(0.4) 33.4(1.8)

There was no significant difference in §°N (Kruskall-Wallis, p =1.0; Figure 12)
enrichment between mature lamprey and salmon, which ranged between 14.7-15.7%o.
Salmon displayed the highest §**C enrichment with an average of -16.5%o compared to
the lamprey which averaged -18.2%o (Figure 12). The §*3C signature differed between
salmon and mature lamprey, and between female and male mature lamprey (ANOVA,
Premate < 0.001, pPmate < 0.001; Figure 12). There was no significant difference in §°C
enrichment between male and female mature lamprey (ANOVA, p = 1.0), Enrichment of
313C did not vary between fresh migrant and mature lamprey and ranged from -19.4 to -
17.6%o. Fresh migrant female and lamprey eggs were the most heavily enriched with
51N, with means of 16.2%. (Figure 13). Fresh migrant male and sexually mature male

which were the least enriched with means of 14.8%., and 15.1%., respectively (Figure
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13). Migrant females were significantly more enriched in N than migrant males
(Pairwise Wilcoxon Rank Sum, p = 0.046), and lamprey eggs were significantly more
enriched than migrant males (Pairwise Wilcoxon Rank Sum, p = 0.01), mature males

(Pairwise Wilcoxon Rank Sum, p = 0.04), and mature females (Pairwise Wilcoxon Rank

Sum, p = 0.001).
Sexually Sexually
Tissue <& Mature v  Mature ® Salmon
Female Male
16.51
~ S \
&
15.5
Z -
oo
14.54
-18.5 -17.5 -16.5 -15.5
3°C (%o)

Figure 12 Mean (+/- 1 standard error) of the isotopic relationships between sexually
mature male and female Pacific lamprey and salmon.
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Figure 13 Mean (+/- 1) standard error of the isotopic relationships between lamprey
tissue samples.

Factors Influencing Food Web Response

| used linear mixed effects models to understand how environmental factors
influenced the autotrophic and heterotrophic response to added nutrients, LA, and SA.
Due to low productivity and the high number of instances where GPP <0 in the fall
samples, GPP was not included in the mixed effects modeling. Instead chlorophyll a was
used as a metric for the autotrophic response, which was consistently explained by
seasonal factors. The final mixed effects model for chlorophyll a in response to the +N+P
treatment indicated that chlorophyll a was higher in the summer (Ime, p = 0.002, Figure
9), and decreased with increasing % open canopy (Ime, p = 0.0002, data not shown). For
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the lamprey in agar tissue treatment, the chlorophyll a NRR was also higher in the
summer (Ime, p = 0.004, Figure 9). Finally, the chlorophyll a NRR response to salmon
tissue in agar was higher in the summer (Ime, p = 0.0004, Figure 9) and increased with
increasing molar N:P ratio of dissolved water column nutrients (Ime, p = 0.046, data not
shown).

Community respiration was also best explained by seasonal factors. The final
mixed effects model for CR NRR in response to +N+P+C suggested that CR was
significantly higher in the fall (Ime, p < 0.001), increased with increasing discharge (Ime,
p < 0.001, Figure 14) and with decreased % open canopy (Ime, p = 0.007, data not
shown). However, the observed increase in CR associated with increased discharge could
be driven by site-specific factors in the Yakima in the summer, and Teanaway in the fall,
outliers that drive the significant regression (Figure 14). The final mixed effects model
for CR in response to LA included site as a random effect and suggested that CR
increased with decreasing temperature (Ime, p < 0.001, Figure 15). Finally, the CR
response to salmon included site as a random effect and suggested that CR was higher in
the fall, (Ime, p < 0.001, Figure 10b) and decreased with increasing molar N:P ratios of

dissolved stream nutrients (Ime, p < 0.001, Figure 16).
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black.
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Figure 15 Relationship between community respiration nutrient response ratio (CR
NRR) in response to lamprey in agar treatment and temperature (p < 0.0001).

Temperature was the final main effect, with site treated as a random effect in a mixed-
effects model to explain CR NRR for the lamprey treatment. Best-fit line shown in black.
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(N:P) ratio. Best-fit line shown in black.
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CHAPTER IV
DISCUSSION

Because salmon are known as important resource subsidies in oligotrophic PNW
streams, resource managers commonly use salmon carcass supplementation to increase
stream food web productivity to mitigate for declining salmon runs (Kohler et al. 2012).
Although studies have demonstrated a positive food web response to the presence of
salmon carcasses via increased biofilm biomass and increased macroinvertebrate
abundance, reviewed in Janetski et al. (2009), this salmon-centric approach has either
ignored or disregarded other anadromous fish species as potential resource subsidies. A
side-by-side comparison of the benthic biofilm response to Pacific lamprey, and Chinook
salmon tissue revealed that lamprey and salmon tissue alleviated nutrient limitation to a
similar or greater degree as added nutrients. Chlorophyll a biomass responded similarly
to both tissue types and was higher in the summer when light availability was greater.
Community respiration had a higher response to salmon than lamprey and was higher in
the fall. Although I found no difference in % C or % N between mature lamprey and
salmon, or between mature lamprey and fresh migrants, an individual salmon can
transport more carbon and nitrogen per fish compared to an individual lamprey due to
larger body size. While salmon have higher % P, likely due to bones, lamprey eggs were
also relatively high in % P, making them an important P source. In the N-limited streams
that | studied, when standardized for body mass, lamprey were an equally important
resource subsidy as salmon, particularly for the autotrophic community in the summer

when salmon would not be spawning.
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Seasonal Patterns in Stream Nutrient Limitation

Nutrient limitation of autotrophic and heterotrophic biofilms shifted seasonally in
all streams in my study. Although other studies in streams in the Olympic Peninsula
(Morley et al. 2016), Idaho (Marcarelli et al. 2009; Sanderson et al. 2009), Ohio (Olapade
and Leff 2005), and northern Michigan (Hoellein et al. 2010) have noted similar seasonal
shifts in nutrient limitation, their noted seasonal patterns were not as pronounced as |
observed. These prior studies found N and P limiting in both seasons, but that the
seasonal change varied including a shift in the primary limiting nutrient (Morley et al.
2016), the seasonal response was not uniform across sites (Marcarelli et al. 20009;
Sanderson et al. 2009; Hoellein et al. 2010), or the seasons differed in magnitude but not
nutrient treatment (Olapade and Leff 2005). In contrast, | found a remarkable consistency
of N limitation in the summer for autotrophic and heterotrophic communities among
sites. However, in the fall the occurrence of no-limitation and P co-limitation increased in
the autotrophic community, and that the heterotrophic community increased in C
limitation or-colimitation.

The frequent N limitation | observed in my study across autotrophic and
heterotrophic communities is likely due to the oligotrophic conditions of my study
streams (USEPA 2000). Across seasons, molar N:P ratio ranged from 0.46-6.07 (Figure
16), much lower than the 17:1 ratio identified for optimal growing conditions for benthic
microalgae (Hillebrand and Sommer 1999), and much lower than the oft-cited Redfield
ratio (16:1; Redfield 1958), suggesting overall N limitation. The widespread N limitation
can be further explained by landscape factors; the igneous rocks of the Cascade

Mountains (McBirney 1978) release P when weathering (Dillon and Kirchner 1975),

53



often making N the limiting nutrient, as seen in many of Washington’s surface waters
(Thut and Haydu 1971). Although background nutrients did not explain the biofilm
response, background N:P and C:P were both collinear with discharge. Therefore, stream
discharge outliers, Yakima in the summer and Teanaway in the fall, that were positively
related to nutrient limitation may have been conflated with nutrient concentrations,
making it likely that background nutrients can be correlated, or predict biofilm response
as seen in other studies (Tank and Dodds 2003; Riiegg et al. 2011; Reisinger et al. 2016).
Seasonal changes in light availability in northern latitudes likely explain the low
productivity and change in limitation status observed in the fall autotrophic communities
at my study sites. Other studies have noted low productivity in the fall (Riegg et al.
2011) and no nutrient limitation of GPP (Johnson et al. 2009). Although 1 did find
instances of nutrient limitation for chlorophyll a in the fall, the overall low rate of
productivity suggests that light availability primarily controlled autotrophic metabolism
(Ambrose et al. 2004), as PNW streams have less light in the fall (Morley et al. 2016) due
to shorter daylight hours and lower sun angle. Other studies have noted the increasing
importance of P in both autotrophic and heterotrophic communities in the fall (Marcarelli
et al. 2009; Morley et al. 2016) or an increase in N+P co-limitation for chlorophyll a
(Tank and Dodds 2003; Marcarelli et al. 2009; Sanderson et al. 2009; Hoellein et al.
2010), also observed in my study streams. Some studies have attributed the increased
importance of P due to the coupled relationship of nutrients (Morley et al. 2016), where
the addition of one causes limitation by another (Elser et al. 1996; Schade et al. 2011).
Although this could be the case in my study as well, the lack of seasonal change in

background nutrients suggests that shifting nutrient limitation pattern between seasons is
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likely driven by different stoichiometric demands driven by a shift in biofilm species
composition (Francoeur 2001; Dodds et al. 2002).

An increase in C limitation in fall heterotrophic communities is likely driven by
the decrease in available labile C sources due to the decline in autotrophic activity
(Olapade and Leff 2005). Although heterotrophic decomposers receive an influx of
allochthonous organic matter from leaf litter input in the fall, this material can be
composed of less desirable heavy-weight organic compounds such as lignin and cellulose
(Ward 1986), compared to the glucose used in my NDS arrays. For example,
heterotrophic communities will select for labile C when available, especially when
chlorophyll a concentrations are low (Olapade and Leff 2005) consistent with the finding
of increased C demand in the fall by heterotrophs in my study streams. Moreover, this
could explain why C was generally not seen as a limiting nutrient for heterotrophs in
summer, when high algal activity would have produced an abundance of low molecular
weight carbon compounds made available by “sloppy feeding” of herbivores (Sterner
1990). While the fall increase in C demand was the most consistent pattern observed in
my study streams, | also saw somewhat higher demand for P by heterotrophs in the fall.
Other studies have similarly found an increase in P limitation in fall heterotrophic
communities (Ruegg et al. 2011) and have attributed this to changing stoichiometric
demands between different biofilm communities (Elser et al. 1996).

Lamprey and Salmon Resource Subsidies

In the side-by-side comparison performed here, both Pacific lamprey and Chinook
salmon alleviated biofilm nutrient limitation at least as well as nutrient addition. For

example, the positive correlation in NRRs from chlorophyll a biomass in response to the
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fish tissue in agar treatments and the added nutrients indicate that either tissue type can
stimulate algal production in the summer. Furthermore, heterotrophic activity had a
higher response to both tissue types compared to the added nutrients. These patterns were
similarly seen by Riiegg et al. (2011) in a fall study based in southeast Alaska using
nutrient diffusing substrata amended with pink salmon tissue, and were interpreted to
suggest that salmon can alleviate nutrient limitation. In contrast to chlorophyll a and CR
patterns, | did not see a consistent GPP response to nutrients and LA or SA which could
be due to scouring of algae (Olapade and Leff 2005) or insect grazing (Marcarelli et al.
2012) in the summer, and in the fall could be due to overall low productivity. Suppressed
autotrophic metabolism in the fall could be due to the fact that although benthic biofilms
are mutualistic communities composed of diverse constituents, autotrophic and
heterotrophic components simultaneously compete for necessary nutrients (Daufresne
and Loreau 2001; Marcarelli et al. 2009) and heterotrophs could be more competitive in
lower light conditions. Regardless, my results show that either lamprey or salmon MDN
can produce a high autotrophic and heterotrophic response.

Stoichiometric differences in lamprey and salmon tissue coupled with differing
stoichiometric demands of biofilm communities (Elser et al. 1996) and seasonal
environmental controls (Morley et al. 2016) likely facilitate how anadromous resource
subsidies would be received in the upper Yakima basin. Overall, | found that chlorophyll
a biomass was approximately 2 times higher in the summer, whereas CR was
approximately 2 times higher in the fall. It is worth noting that several studies have found
that riparian canopy can prevent an autotrophic response to added nutrients (Ambrose et

al. 2004; Weaver et al. 2016), however much of the interior Columbia River basin is
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considered shrub-steppe (Benson et al. 2011) with streams having limited riparian cover.
Community respiration had a higher response to SA compared to LA suggesting that the
timing of nutrient availability from spawning lamprey and salmon may influence the
biofilm response depending on shifting stoichiometric demands in the receiving
ecosystem among seasons. Stoichiometric demands, where organisms require certain
C:N:P ratios to facilitate proper growth and function (Elser et al. 1996), can explain
differences in receiving ecosystems (Sterner et al. 1992). For example, the instances
where the +N+P treatment elicited a higher response than LA and SA in conjunction with
the uniformly higher CR response to LA and SA is likely due to stochiometric demands
of biofilms and C:N:P ratios of the treatments (Elser et al. 1996). | found that lamprey
and salmon had molar C:N:P ratios of approximately 187:37:1 and 60:13:1 respectively,
whereas the nutrient treatments were all 1:1:1. Therefore, LA and SA treatments likely
stimulated productivity to the point where N limitation was relieved and P became
limiting (Schade et al. 2011), whereas the +N+P treatment met that demand, allowing
higher algal growth. Similarly, the higher C and P demand by fall heterotrophic
communities was likely met by the presence of more labile C in the tissue treatments
(Ruegg et al. 2011; Hoellein et al. 2010), and the higher P content of salmon due to bones
and scales (DaCosta and Stern 1958; Hendrixson et al. 2007) compared to lamprey.
Furthermore, the higher autotrophic response in the summer, and higher heterotrophic
response in the fall is likely due to competition between biofilm communities (Daufresne
and Loreau 2001; Marcarelli et al. 2009), where greater light availability in the summer
can provide autotrophs the advantage over heterotrophs (Ambrose et al. 2004), thus

determining the limitation status of biofilm communities. Therefore, depending on the
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seasonal demand by different biofilm community constituents and the nutrients delivered
by the specific resource subsidy, the stream ecosystem response will likely differ.

The influx of nutrients from Pacific lamprey has the potential to stimulate indirect
trophic transfers of energy as documented in anadromous sea lamprey (Weaver et al.
2016; Weaver et al. 2018b) and salmon (Bilby et al. 1996; Naiman et al. 2002). The
timing of anadromous lamprey spawning in the spring and early summer can stimulate
autotrophic production while simultaneously extending the MDN signature into the food
web and increasing stream production for longer periods of time. Spring and early
summer can be characterized by high in-stream nutrient demand due to increased algal
activity (Hoellein et al. 2010). Given the autotrophic nutrient limitation seen in my study
and by others in the region (Morley et al. 2016; Reisingeret al. 2016), nutrients provided
from spawning and post-spawn Pacific lamprey may arrive at an ecologically critical time
when they can alleviate benthic biofilm nutrient limitation. Furthermore, the addition of
MDN from spawning Pacific lamprey likely extends the temporal availability of MDN to
be incorporated into a food web. Given that | did not find any difference in the *°N
signature of lamprey and salmon (Minagawa and Wada 1984), some studies that have
attributed historic MDN signatures to the presence of salmon may have inadvertently
underrepresented anadromous spawning Pacific lamprey. This is especially true where
studies have found extended spring MDN signatures along with the presence of larval
Pacific lamprey within the study reach (Bilby et al. 1996) or when stable isotopes were
used to reconstruct consumer diets (Hilderbrand et al. 1996). Lastly, fresh migrant and
mature lamprey elicit the same food web response, suggesting they can promote indirect

food web productivity at any migratory stage in addition to acting as a direct resource.

58



Therefore, during their spawning period, Pacific lamprey provide the necessary nutrients
to alleviate benthic biofilms in the Yakima River basin, and other similarly N-limited
basins, thus stimulating bottom up food web productivity.

Although tule fall Chinook salmon would not spawn in the Yakima basin, they
were the only carcasses available at the start of this study. Their N:P elemental
composition appears to be somewhat lower compared to other Pacific salmon species.
The C:N ratio of salmon used in this study was 4.5:1, comparable to a range of 3.7:1-
5.9:1 depending on species (Lyle and Elliott 1998; Johnston et al. 2004; Rilegg et al.
2011). Although I did not include the head of the salmon in my study, which is likely a
substantial source of P (DaCosta and Stern 1958), | found a lower N:P ratio of 13.4:1
compared to 18.7:1 for other Chinook salmon (Larkin and Slaney 1997), or 24:1 for coho
salmon (Riegg et al. 2011). This difference is likely due to a lower N content as opposed
to a higher P content in the salmon used in my study, as tule fall Chinook do not need as
many stored reserves compared to their long-distance migrating counterparts because tule
fall Chinook salmon do not migrate far prior to spawning (Wyndoski and Whitney 2003).
A study based on Columbia River migrating Chinook salmon found that along a 920 km
migration, male Chinook salmon utilized 82% of somatic energy reserves and began
metabolizing proteins to develop secondary sexual characteristics (Hendry and Berg
1999; Bowerman et al. 2017). Given that spring and summer Chinook in the Yakima
River migrate approximately 744.9 km to Roza Dam (roughly 60.7-76.1 km downstream
of my upper sites), it is possible that by the time they metabolize energy and protein
reserves, they might have a lower N:P ratio similar to the tule fall Chinook used in my

study. Regardless of the elemental composition of the salmon | used, the only other
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salmonid species spawning during the summer deployments of my study would be
steelhead (O. mykiss) which do not have obligate semelparous life histories in the Yakima
basin (Yakama Nation 2019) and would not provide the same post-spawn resource
subsidy as Pacific salmon or Pacific lamprey. Therefore, my findings that Pacific lamprey
can stimulate autotrophic activity in the summer are relevant given that Pacific lamprey
would be the only anadromous fish providing this kind of resource subsidy in these

streams at that time.

Management Implications

Anthropogenic interference and prevention of resource flows from anadromous
fish (i.e., dam construction, water diversions, overfishing), likely have far-reaching
consequences (Larsen et al. 2016) for Pacific lamprey, salmon, and other species that
have co-evolved (Close et al. 2002; Miller 2012) to rely on the annual, regular supply of
MDN. In fact, low amounts of MDN entering PNW streams (Gresh et al. 2000) resulting
from reduced anadromous fish runs have likely decreased in-stream productivity and
affected subsequent adult returns (Naiman et al. 2002). For example, decreasing numbers
of returning adult salmon reduce overall stream productivity, thus reducing juvenile
survival, which results in fewer adult returns, ultimately decreasing a stream’s ability to
support healthy fish populations (Bilby et al. 1996). Conversly, restoration efforts that
increase spawner abundance can create a positive feedback loop, whereby decomposition
of spawned out adult carcasses benefit emerging fish via increased stream productivity,
which increases the chance of juvenile survival and ultimately leads to increased spawner

abundance (Bilby et al. 1996; Naiman et al. 2002; Weaver et al. 2018b). Given that the
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upper Yakima River basin has oligotrophic nutrient levels (USEPA 2000) and mostly N-
limited biofilm activity, even small amounts of N are likely to stimulate food web
productivity (Bilby et al. 1996). Therefore, successful Pacific lamprey restoration efforts
could result in substantial increases in food web productivity in the upper Yakima basin.
As seen in this study, Pacific lamprey resource subsidies can alleviate nutrient limitation
and increase biofilm productivity, which should result in more energy transferred to
higher consumers via indirect, bottom-up mechanisms (Bilby et al. 1996; Naiman et al.
2002). Although I did not examine direct pathways, others have observed consumption of
lamprey eggs and carcasses by stream consumers demonstrating their importance (Close
et al. 2002; Arakawa and Lampman 2020), and both pathways would ultimately stimulate
the positive feedback loop to increase stream productivity.

If Pacific lamprey populations recover to the target goal of 28,000-35,000 within
the Yakima River basin (Ralph Lampman, unpublished data), this would equate to
approximately 3700-4600 kg of C, 800-1050 kg of N and 5.5-6.9 kg of P added to the
basin from carcasses alone. Spawner densities would determine if this amount of
lamprey-MDN would contribute to a reach-scale effect, however sea lamprey studies on
the east coast suggest that that densities of approximately 50 carcasses km™ (Hogg et al.
2013) could increase algal biomass and macroinvertebrate MDN enrichment directly
downstream of the carcasses via indirect, bottom-up trophic transfers (Weaver et al.
2016). Although anadromous sea lamprey are larger than Pacific lamprey (Clemens et al.
2010) and can therefore transport more MDN per fish, target population goals of 28,000-
35,000 Pacific lamprey equate to an average of 91.6 adults per km throughout the

mainstem Yakima River. This density is theoretically possible, given that Brumo and
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Markle (2006) reported 48 adult Pacific lamprey/km in a coastal stream in Oregon, and
traditional ecological knowledge suggests that lamprey may have been the dominant
biomass in some streams (Petersen 2006; Miller 2012), especially where waterfalls were
a barrier to salmon. Therefore larger Pacific lamprey populations that result from
sustained restoration efforts could then elicit a similar indirect effect as seen in salmon
studies (Zhang et al. 2003; Hood et al. 2019; Kaylor et al. 2020). Moreover, if post-spawn
Pacific lamprey carcasses accumulate in depositional areas in conjunction with increased
in-stream habitat complexity (Dunkle et al. 2020), then their subsidy effect may be more
concentrated in those areas creating a hot spot (McClain et al. 2003; Dunkle 2017) of
productivity.

Fortunately salmon and lamprey have similar distributions (Wicks-Arshack et al.
2018) and face similar conservation challenges, therefore, inclusive restoration efforts
such as habitat restoration have the potential to benefit both species (Clemens et al.
2017). Unfortunately, some conservation efforts specifically geared toward salmon (i.e.,
fish passage structures, water diversion bypass screens) have likely unwittingly
contributed to lamprey declines. Ironically, salmon ladders built to facilitate salmon
passage at mainstem dams have created passage barriers for lamprey and have been
identified as one of the most immediate threats faced by Pacific lamprey populations
(Clemens et al. 2017, CRITFC 2011). Poor lamprey passage likely caused the local
extirpation of Pacific lamprey in the upper Yakima basin as Pacific lamprey had not been
documented above Roza Dam until the Yakama Nation translocated adults in 2015.

Although there have been minor passage improvement projects, telemetry studies by the
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Yakama Nation have determined that Roza Dam continues to act as a passage barrier for
lamprey and will be the focus of future restoration work (Lampman 2017a).

Although Pacific lamprey populations in the PNW are at historically low levels,
there are several reasons to celebrate. For example, adult translocation efforts have been
successful, as Yakama Nation biologists and staff found larval Pacific lamprey above
Roza Dam 1 year after adult translocation efforts began (Lampman et al. 2016). Although
lamprey passage at Roza Dam still requires lamprey passage structures, the presence of
larval lamprey will likely support lamprey recolonization due to the presence of larval
pheromones which attract spawning adults (Sorensen et al. 2005; Close et al. 2009; Yun
et al. 2011). Furthermore, there have been several success stories where the removal of
dams that had previously been a passage barrier for lamprey have almost immediately
resulted in lamprey recolonization (Jolley et al. 2018; Hess et al. 2021), suggesting that
improved lamprey passage significantly increase lamprey spawner abundance.

It is likely that the health and future of lamprey and salmon populations are
intertwined through direct and indirect relationships. As a direct relationship, Chinook
salmon and other marine fish populations and Pacific lamprey returns are positively
correlated, likely due to higher marine food sources for both (Murauskas et al. 2013).
Salmon eat dead larval lamprey (Arakawa and Lampman 2020), migrating lamprey act as
salmon predation buffers, and spawning lamprey provide carcass and egg material
available for direct consumption (Close et al. 2002; Kaylor et al. 2020). Indirectly,
lamprey and salmon likely contribute to the increased growth of larval lamprey and
juvenile salmon via a reciprocally beneficial positive feedback loop. For example, salmon

stimulate stream food web activity in the fall (Bilby et al. 1996; Wipfli et al. 1998;
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Chaloner et al. 2002; Zhang et al. 2003), increasing autochthonous production which is
then available for larval lamprey (Evans and Bauer 2016). Similarly 1 have demonstrated
that Pacific lamprey can stimulate autochthonous production, which can then increase
available food sources for juvenile salmon via indirect trophic transfers (Verspoor et al.
2011; Weaver et al. 2016). Overall, my study demonstrates that reintroducing Pacific
lamprey to the upper Yakima River basin, and possibly other basins with similar nutrient
limitation patterns, will likely increase productivity in stream food webs that ultimately
support larval lamprey and juvenile salmon as well as resident aquatic species and

terrestrial species that utilize stream food webs.

Future Studies

Future studies that attempt to estimate how stream food webs will respond to an
anadromous resource subsidy at the basal level (biofilm response) via an NDS approach
should be able to use the methods outlined by Ruegg et al. (2011) and implemented in
this study. Prior to my study, Riegg et al. (2011) had added salmon tissue in agar as an
NDS amendment, whereas my study added to this method by including a treatment of
homogenized fish tissue in nylon, which more closely mimics a fish carcass in a stream.
Based on my findings, there was no significant difference in the chlorophyll a response to
tissue in agar or nylon, therefore 10% w/v for fish tissue in agar can measure the
autotrophic response as well as tissue in nylon. However, | found that the use of fish
tissue in nylon elicited a significantly higher heterotrophic response than tissue in agar.
This suggests that using 10% w/v for fish tissue in agar may be a conservative estimate of

the heterotrophic response compared to fish tissue in a stream. This methodological
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information is useful when there may not be enough carcasses available to perform
stream carcass subsidy studies as seen in salmon research (see Janetski et al. 2009), but
where researchers are still interested in estimating how low population fish carcasses,
such as Pacific lamprey, could influence stream food webs.

Given that PNW rivers historically received reliable pulses of anadromous
resource subsidies throughout the year, the high amount of carcass material and nutrients
this provided likely drove both direct and indirect pathways. This is important as resource
subsidies may not be received equally even when available to species in similar trophic
levels. For example, Kaylor et al. (2020) found that salmon carcasses contributed to
stream food webs directly via juvenile salmonid feeding, however non-salmonid native
fish benefitted via an indirect food web pathway, suggesting that the addition of a well-
known subsidy may not directly impact different species in the same way. Similarly,
Arakawa and Lampman (2020) found that different piscivorous fish species have
different rates of predation on larval lamprey. Therefore, although my study determined
how the basal food web responds to lamprey carcasses, how indirect food web effects
benefit other species remains poorly understood. If future studies utilized lamprey
carcasses in similar methods as salmon carcass subsidy studies (Wipfli et al. 1998;
Morley et al. 2016; Kaylor et al. 2020) to track the trophic transfer of energy via stable
isotopes, this would fill a large knowledge gap in our understanding of the nuanced
pathways that lamprey can act as a resource subsidy.

Furthermore, as restoration efforts increase the possibility for bigger lamprey and salmon
populations, it is important to understand how each species will affect the other. For

example, while we know that increased salmon (Wipfli et al. 1998; Naiman et al. 2002)
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and lamprey (Weaver et al. 2018b) spawner abundance can initiate a positive feedback
loop to support future spawners, few studies have researched how a lamprey-initiated
positive feedback can impact salmon, and vice-versa. Therefore, future studies should
focus on how the presence of adult salmon might influence larval lamprey, and how adult
lamprey might influence juvenile salmon. This information could contribute to a better
understanding of the relationship between lamprey and salmon, and help to guide future

management decision making.

Conclusion

Pacific salmon have long been recognized for their important role in linking
marine systems to oligotrophic river systems via MDN transport, thus stimulating food
web activity through indirect (bottom-up) and direct pathways that benefit the receiving
stream ecosystem, the riparian corridor, and upland species that depend on stream
ecosystems. This dogma is so well known that resource managers actively add salmon
carcasses and salmon carcass analogs to streams to compensate for diminished salmon
returns (Kohler et al. 2012; Marcarelli et al. 2014). This salmon-centric view disregards
the importance of other anadromous species such as Pacific lamprey, which once
dominated anadromous returns in some streams (Petersen 2006; Miller 2012). By
performing a side-by-side comparison of autotrophic and heterotrophic biofilm response
to nutrients transported by Pacific lamprey and Pacific salmon in the upper Yakima River
basin, | demonstrated that lamprey elicit the same autotrophic response as salmon.
Although salmon are larger than lamprey and can therefore transport more nutrients on an

individual basis, the stoichiometric composition of Pacific lamprey is in the correct
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proportion to alleviate biofilm nutrient limitation during Pacific lamprey spawning
months in late spring through early summer. This suggests that lamprey may be able to
facilitate an autotrophic response in other regions where N is a limiting nutrient as it is in
many PNW streams (Thut and Haydu 1971). Cumulatively, my results suggest that
lamprey may provide important MDN at a time when autotrophic and heterotrophic
pathways experience nutrient limitation. Overall, the results of this study demonstrate
that lamprey are an equally important subsidy of MDN as salmon, and restoration of
lamprey populations should achieve similar ecological benefits as salmon population

restoration.
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