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ABSTRACT 

DEVELOPMENT OF ENVIRONMENTAL METABARCODING ANALYSIS FOR USE IN 

ECOLOGICAL STUDIES OF AQUATIC FUNGAL AND OOMYCETE  

COMMUNITIES USING NANOPORE SEQUENCING 

by  

Douglas Marvin Bennett 

August 2021 

 One of several factors contributing to amphibian decline are organisms called 

water molds (oomycetes), which parasitize and kill amphibian and fish eggs, larvae, and 

occasionally adults. Amphibian decline is one of the most difficult issues facing 

ecologists and conservationists to date; half of amphibian species are in severe decline 

and one third of amphibian species are facing extinction, threatening the stability of 

ecosystems globally. Multiple oomycete species are known to cause the disease 

saprolegniasis and contribute to amphibian decline; however, the full range of species 

involved is not presently known. This study evaluated the Oxford Nanopore minION 

DNA sequencer (R9.2 chemistry) for use in DNA barcoding multiplexed samples. This 

study aimed to develop new methods of environmental metabarcoding analysis to 

assess aquatic oomycete and fungal communities using the internal transcribed spacer 

(ITS) DNA barcode. A proof-of-concept survey was performed to assess community 

composition and diversity of aquatic oomycetes and Fungi in 4 freshwater habitats with 
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saprolegniasis present. Samples were taken April 15, 2016 at 4 sites along Interstate-90 

near Snoqualmie Pass (Wenatchee National forest, Washington) during Rana cascadae 

and Anaxyrus boreas breeding season near eggs with saprolegniasis.  

The minION produced high but uneven throughput across all four sites. The 

sequence accuracy and error type prevented chimera checking and phylotype 

assignment. Sequences were matched using NanoOK to the UNITE database to assign 

operational taxonomic units (OTUs). FUNGuild was used to assign trophic modes to 

OTUs to evaluate functional diversity. The recovered oomycete OTUs were low (~1% of 

all reads) and represented plant pathogenic phyla. Fungal recovery was broad with 

aquatic taxa represented heavily. Diversity analysis showed little difference between 

sites, with evidence that uneven throughput affected beta-diversity indices from 

assessing compositional differences. Trophic mode analysis showed little difference 

between sites.  

Overall, this study found that the minION sequence data presented multiple 

bioinformatic challenges for metabarcoding using the ITS region. With low recovery of 

oomycetes, further study is needed to determine the availability of oomycete zoospores 

for collection via the sampling methods used in this study. Additionally, oomycete 

specific primers are recommended for increased recovery.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Oomycete Taxonomy and Ecology 

Water molds (oomycetes) are fungus-like protists belonging to the kingdom 

Chromista; but were originally characterized as Fungi, in the now defunct Class 

Phycomycetes, due to their morphology (Dick 1976; 2001). Phylogenetic analysis placed 

the oomycetes evolutionarily closer to diatoms, brown-algae, and other protists in the 

kingdom Chromista (Beakes et al. 2012). As a group, the Chromista are unified by the 

production of heterokont zoospores with one tinsel type flagellum and production of 

chlorophyll a & c containing chloroplasts among photosynthetic representatives 

(Cavalier-Smith and Chao 2006). The oomycetes have lost their chloroplasts and the 

production of chlorophyll over time (Cavalier-Smith and Chao 2006).  

Oomycetes are mostly pathogens of plants (Huxley 1881; Lucas et al. 1991; 

Kiesecker et al. 2001; Beakes and Thines 2017). Oomycetes of the order Saprolegniales 

are mostly saprotrophs that decompose organic matter, making them important 

contributors to nutrient cycling; however, several species are implicated in causing the 

amphibian and fish disease saprolegniasis (Huxley 1881; Kiesecker et al. 2001; Beakes 

and Thines 2017). The Peronosporales includes plant pathogenic genera Pythium and 

Phytophthora (Lucas et al. 1991). Phytophthora infestans has been identified as the 

pathogen causing late blight disease; an outbreak of which led to the potato famine in 
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1840s Europe (Yoshida et al. 2013). Overall, members of the oomycetes impact the 

ecology of numerous organisms, contribute to nutrient availability, and can be 

devastating to industry. 

Saprolegniasis and Amphibian Decline  

Oomycetes have also been implicated causing the disease saprolegniasis in 

salmonids and other fish dating back to the late 1800s (Huxley 1881) and have been 

shown to affect egg clutches as well as juveniles, particularly in aquaculture, as a disease 

of the fins and body (Earle and Hintz 2014). Fish hatcheries globally are susceptible to 

Saprolegnia parasitica due to the fish dense ponds with low water flow (Willoughby and 

Roberts 1992; Earle and Hintz 2014).  

Saprolegniasis has been shown to be a major cause of amphibian decline, 

specifically in Anurans (frogs), and a minor factor in Caudata (salamanders) decline 

(Blaustein et al. 1994). Eggs and embryos are the most common life stage where 

saprolegniasis occurs. Larvae and adult frogs can also have saprolegniasis on their skin, 

though this is less common than egg infections (Kim et al. 2008). As high as 80% clutch 

mortality has been observed in severe cases of amphibian egg saprolegniasis, so 

mitigation of this disease is important to reducing amphibian decline (Kiesecker et al. 

2001).   

Understanding amphibian decline represents a major challenge facing ecologists 

and conservationists; half of all species are in severe decline and one third of all 

amphibian species are facing extinction, threatening the stability of ecosystems globally 
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(Blaustein and Kiesecker 2002; Stuart et al. 2004). Amphibian decline is thought to be 

the result of anthropogenic factors, such as deforestation, habitat fragmentation, and 

habitat use, as well as biological factors of parasitism and disease (Beebee and Griffiths 

2005). Anthropogenic factors are being monitored regularly as they affect a larger 

number of organisms; however, there is still a lack of understanding of the biological 

factors impacting decline, such as the diseases saprolegniasis and chytridiomycosis 

(Bienentreu and Lesbarrères 2020). Amphibians are important predators of insects and 

are food sources for freshwater fish, birds, and mammals. Increased study of 

saprolegniasis is not only beneficial for preserving the amphibians affected but also the 

ecosystems to which these amphibians belong.  

Factors Affecting Amphibian Disease Severity  

Amphibian disease severity varies widely and relatively little is known about how 

species of oomycetes may interact with each other and other organisms (Kiesecker and 

Blaustein 1997). It is known that disease severity is affected by several environmental 

factors such as: temperature, ultraviolet light, and pH level; the response to these 

factors depends upon the water molds present (Banks and Beebee 1988; Kiesecker and 

Blaustein 1995; Hatch and Blaustein 2000; Kiesecker et al. 2001; Blaustein et al. 2003). 

Infection timing in embryonic development has also been shown to affect egg survival 

(Fernández-Benéitez et al. 2011). Phylogenetic studies have identified at minimum 

seven and as many as twelve different phylotypes of water mold associated with active 

infection of amphibian eggs (Johnson et al. 2008; Petrisko et al. 2008). Further evidence 
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suggests more species than initially indicated may contribute to pathogenicity and egg 

mortality (Fernández-Benéitez et al. 2008; 2011; Brady 2010; Ault et al. 2012). A 

succession pattern was also found in saprolegniasis infections, finding that Saprolegnia 

ferax and Saprolegnia declina are typically among the first colonizers on an amphibian 

egg with the number of phylotypes found increasing as the eggs age (Ault et al. 2012).  

Inventory and Identification of Aquatic Oomycetes 

Historically, conducting biodiversity inventories of the oomycetes required the 

isolation of axenic cultures from water or soil samples. While relatively inexpensive, this 

approach is very labor and time intensive. These methods include baiting for motile 

water mold zoospores in small water samples (20-30 mL) or from obviously infected 

materials in sterile water. Commonly used baits include seeds, salmon eggs, and 

snakeskin (Sparrow 1960; Stevens et al. 1974). The baits chosen for a study may select 

for different species potentially limiting the recovery of slower growing or rare species 

(Stevens et al. 1974). Overall, these methods tend to select for the most aggressive and 

fastest growing species in any sample. As a result, many species may fail to be 

recovered, limiting the understanding of saprolegniasis and aquatic ecosystems. 

Morphological identification of pathogens from infected eggs or materials is also 

problematic. Morphological identification relies upon reproductive structures and 

spores to be present (Johnson 1956; Seymour 1970). However, recent molecular 

phylogenetic studies suggest that the morphology of the oomycetes does not accurately 

reflect phylogeny (Dieguez-Uribeondo et al. 2007; Johnson et al 2008). Due to the 
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difficulty finding morphological traits that accurately identify monophyletic groups, 

identification of water molds in many studies is currently done primarily using DNA 

sequence data and phylogenetic analysis (Johnson et al. 2008; Sandoval-Sierra 2014). 

This approach allows one to more accurately identify morphologically variable or cryptic 

species that are difficult to assign to groups morphologically (Johnson et al. 2008).  

The phylogenetic identification approach is exemplified in studies using DNA 

barcoding, the use of a short universal sequences which can be used to determine 

species boundaries as well as evolutionary relationships (White et al. 1990, Hebert et al. 

2003). For oomycetes and Fungi, the primary barcode is the internal transcribed spacer 

(ITS) region which codes for spacers between ribosomal subunits and a portion of the 

rRNA (Leclerc et al. 2000; Seifert et al. 2007; Robideau et al. 2011, Schoch et al. 2012; 

Choi et al. 2015, Riit et al. 2016). Subsequent phylogenetic studies, using DNA 

barcoding, have identified water molds by phylotype; which is an identification based 

upon less than 97% similarity by genetic distance between individuals and may 

represent a more accurate assignment of individual species given the lack of clarity in 

water mold taxonomy (Parrent et al. 2006; Ault et al. 2012).  

Environmental Metabarcoding and eDNA Sampling 

Environmental metabarcoding is a relatively new approach which involves taking 

environmental DNA (eDNA) samples from soil, air, water or other materials, extracting 

all the DNA from the sample, and sequencing the DNA to identify species of interest 

(Ogram et al. 1987; Lydolf et al. 2005; Lodge et al. 2012). Environmental metabarcoding 
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is used in bacterial research as well as for cryptic amphibian species (Taberlet et al. 

2012; Sapp et al. 2016). This approach has been used effectively in soil environments to 

detect terrestrial oomycetes; however, it has not yet been employed for use in the 

study of aquatic oomycetes (Schmidt et al. 2013).  

The primary use of eDNA is to use targeted primers to detect specific individuals 

or selected groups of individuals; although, a wide range of applications have emerged 

(Taberlet et al. 2012). The targeted approach has been used to detect cryptic amphibian 

species in streams (Goldberg et al. 2011) and for detecting invasive fish (Davison et al. 

2016). Since there is a lack of clarity of the identities and taxonomy of pathogenetic 

oomycetes, species specific primer sets have not been developed (Fernández-Benéitez 

et al. 2008; 2011; Brady 2010; Ault et al. 2012). As a result, the targeted detection of 

pathogenic oomycetes was not available at the time of this study.  

The alternative approach, used in this study, is to utilize general barcoding 

primers and optimize PCR conditions to maximize return of oomycete sequences. The 

environmental metabarcoding approach removes the need for cultures and thus 

removes bait selection and competition as a barrier for identification. Considering the 

bias of traditional isolation methods, the limitations of morphological identification, and 

the lack of clarity of oomycetes involved in saprolegniasis, the environmental 

metabarcoding approach is highly appealing for the study of oomycetes as it removes 

major limitations of previous studies.  
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DNA Sequencing Technology 

In early studies, the ITS region was sequenced for individual isolates using Sanger 

sequencing (Horton and Bruns 2001; Hulvey et al. 2007). This was done because, at the 

time, this was the only sequencing technology available. It also has the advantage of 

relatively long read lengths (~1000 bp), which enabled the sequencing of each strand 

with a single reaction. However, this type of sequencing requires either pure (axenic) 

cultures (Sanger and Coulson 1975; Sanger et al. 1977) or cloned PCR fragments that can 

be sequenced individually (e.g. Arcate et al. 2006; Hassan et al. 2011; Ault et al. 2012). 

In order to sequence eDNA recovered from mixed soil and water samples, PCR 

fragments had to be subcloned into bacteria in order to isolate individuals. Culture and 

subcloning methods were time consuming, labor intensive, and expensive limiting larger 

studies of the ecology of microbial environments.  

Second-generation sequencing technology, such as Illumina and Pyrosequencing, 

have increased throughput for whole genome sequencing but with shorter read lengths 

than Sanger sequencing. These technologies simultaneously sequence an array of 

individual DNA strands via synthesis with modified nucleotides, allowing for the 

sequencing of mixed samples (Ahmadian et al. 2006). This lowered the cost and time 

investment per sample dramatically from the labor-intensive approach required with 

Sanger sequencing. The other advantage to this second-generation approach is that a 

relative abundance of individuals in the sample can be estimated based upon the 

number of sequences that are read, with some consideration to amplification bias if the 
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samples have undergone PCR (O’Brien et al. 2005; Lamb et al. 2019). As a result, second-

generation sequencing has reduced the time and labor of environmental metabarcoding 

studies (Jumpponen et al 2010; Schmidt et al. 2013).  

The Oxford Nanopore minION is the third generation DNA sequencer which 

takes a novel approach to DNA sequencing (Laver et al. 2015; Weirather et al. 2017). 

The minION uses sequencing by shape rather than by synthesis. The DNA is drawn 

through a Nanopore via motor protein as buffer flows through the pore. The change in 

ion flow caused by the unique shape of each nucleotide as it passes through the pore is 

detected by an electrode downstream of the pore. This technology can sequence 

individual strands of DNA without amplification. Additionally, Nanopore sequencing 

offers much greater read length (average ~2 kbp) which allows the sequencing of the 

entire ITS while also having multiple samples in the same run. Making the minION ideal 

for this type of metabarcoding study. The drawback of this technology is lower accuracy, 

the chemistry used in this experiment was known to have an average accuracy of ~90% 

at the time of this study.  

At the time this study was conducted the average read length of Illumina was 

less than 300 bp and would not be able to sequence the entire ITS (Quail et al. 2008). 

Pyrosequencing was capable of around 600 bp at the time of this study, however it was 

prohibitively expensive (Ahmadian et al. 2006). For this study, the choice was between 

sequencing the entire ITS region at an expensive cost or roughly half the ITS at a much 

lower cost when considering second-generation technology. The Oxford Nanopore 

minION at the time of this study was roughly half the cost for sequencing the entire ITS 
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compared to Pyrosequencing. The minION was selected for this study as it presented 

the most cost-effective solution for the environmental metabarcoding approach used in 

this study. One question of this study was whether the lower accuracy of the minION 

could be overcome by increased coverage of the ITS region for identification of species 

or phylotypes.  

Study Design 

Most of the early studies of amphibian saprolegniasis focused on identifying sites 

and severity of disease conditions; and used morphology to identify the pathogens 

responsible (e.g. Banks and Beebee 1988; Blaustein et al. 1994). As a result of the 

problems with morphological identification methodology, Saprolegnia ferax and 

commonly just Saprolegnia sp. were the most common species identified as causing 

most infections (e.g. Banks and Beebee 1988; Kiesecker and Blaustein 1995; 1999). 

Subsequently, there is a lack of clarity as to how the presence of individual species of 

oomycetes affects disease severity. Recent studies have identified several distinct 

phylotypes associated with amphibian embryos and demonstrated some of these are 

also pathogenic (Fernández-Benéitez et al. 2008; Johnson et al. 2008; Petrisko et al. 

2008; Brady 2010; Ault et al. 2012). Given that traditional isolation techniques are 

biased for the fastest growing individuals or may misidentify organisms present due to 

poor taxonomy, a survey of the oomycetes in habitats where saprolegniasis occurs is 

warranted.  
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Locally, the cascades frog (Rana cascadae) and western toad (Anaxyrus boreas) 

are both affected by saprolegniasis (Hatch and Blaustein 2000; Kiesecker et al. 2001). 

The western toad is currently considered a state candidate for preservation in 

Washington; although, globally the population is listed as least concern (IUCN 2020). 

The cascades frog is near threatened globally (Hammerson and Pearl 2004). These 

species can both be found in the high alpine lakes in the Cascade mountains in 

Washington (Cohen and Stebbins 1995).  

Western toads and cascades frogs utilize habitat differently. Western toads are a 

migrating species that rely upon temporary ponds from melting snow to make the 

journey from overwintering sites to breeding ponds (Bartelt et al. 2004). Cascades frogs 

are typically found in or near small ponds, lakes, and occasionally in temporary pools 

near streams (Cohen and Stebbins 1995; Resetarits 1996). Cascades frogs typically 

hibernate in the mud in shallower portions of ponds and lakes (Cohen and Stebbins 

1995). These lifestyle dissimilarities could influence exposure to oomycetes during non-

breeding months.  

Egg laying behavior is also slightly different between the western toad and 

cascades frog. Western toad egg clutches are laid in long strings, which could be a 

behavioral adaptation to prevent the spread of saprolegniasis (Kiesecker and Blaustein 

1997). Cascades frogs lay large egg masses and females will group together to lay eggs 

making them more susceptible to saprolegniasis (Kiesecker and Blaustein 1997). 

Zoospore recovery near infected eggs of each species could vary between species as egg 

density varies, as well as differences in host specificity of pathogenic species.  
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Reproduction of oomycetes can be asexual, producing motile zoospores, or 

sexual, producing non motile oospores (Wardrip et al. 1999; Hardham 2001). Zoospores 

are flagellate and are produced in a zoosporangium from the hyphal stage of water 

mold. Zoospores can encyst multiple times prior to the germination of hyphae; these 

cysts can persist in harsh environmental conditions and show chemotaxis to hosts and 

substrates (Ho 1975). The potential presence of zoospores, near amphibian eggs with 

saprolegniasis, swimming chemotactically to reinfect the egg masses or search for a new 

host, provides an opportunity for collection. Spores can be filtered from this sample 

using commonly available filters, as the spores are a similar size to bacteria (Stevens et 

al. 1974; Dick 2001).  

Both the western toad and cascades frog being affected by saprolegniasis, their 

overlapping locality, and lifestyle differences provides an excellent opportunity to study 

oomycetes related to saprolegniasis. Potential capture of zoospores by water sample 

limits potential biases observed in traditional study methods. The eDNA sampling 

approach is also less invasive than identification of pathogens on infected eggs, as 

collection of infected materials often disturbs neighboring eggs. Considering these 

factors, a proof-of-concept study was performed using water samples collected near 

eggs of these two local amphibians with saprolegniasis present. 

Study Aims 

 The aim of these experiments was to evaluate the use of Oxford Nanopore 

sequencing for DNA barcoding of the ITS region and eDNA sampling methods to study 
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oomycetes. The minION presented the most cost-effective approach at the time of this 

study; as well as, potentially providing more accurate identification due to complete 

sequencing of the ITS region, despite expected lower basecalling accuracy, compared to 

other technologies. The study sites selected for this experimental survey represent a 

variety of habitat conditions where saprolegniasis was present and, if successful, could 

have provided a baseline for future studies of amphibian saprolegniasis. An ecological 

analysis was also performed to assess the community recovered and evaluate any 

potential problems presented by the sequencing and sampling methods used in this 

study.   
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CHAPTER II 

METHODS 

Study Area 

 This study focused on the central Cascades near Snoqualmie Pass, WA 

along the Interstate-90 (I-90) corridor. Four freshwater ponds were selected for the 

presence of breeding western toads and cascades frogs and presence of saprolegniasis. 

All 4 sites were sampled on April 15, 2016, during the spring snow melt. Snoqualmie 

pass regularly sees frozen conditions from November to March, with the main snow 

melt typically occurring around the first week of April. The 4 ponds selected were: 

Swamp Lake, Swamp Creek, Mardee Lake, and Gold Creek Stockpile as shown in Figure 

1.  

Swamp Lake is about 0.69 km north of I-90 located immediately east of Kachess 

Lake Rd, at the time sampled the water was about 0.5-2 m in depth with remnants of 

emergent vegetation from the previous year still present. Swamp Lake had both 

cascades frog and western toad breeding occurring at the time of sampling, with some 

sightings of pacific chorus frog (Pseudecaris regilla) eggs and northwest salamander 

(Abystoma gracile) eggs which showed no signs of disease. It is possible other 

salamanders were present, but at the time of sampling none were observed.  
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Figure 1: Study area with individual ponds indicated by arrows. (http://www.google.com/maps)  

Swamp Creek are located approximately 15.6 km southeast of the Snoqualmie 

Pass summit. Swamp Creek is located less than 80 m south of I-90 and located north of 

Stampede Pass Rd, this was the most heavily polluted pond of the 4 selected due to its 

proximity to I-90. Swamp Creek features shallow (<0.5 m depth) and deep (>1 m depth) 

sections, samples were taken in the shallow section approximately 20 m north of 

Stampede Pass Rd where cascades frog eggs were located.  
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Gold Creek Stockpile was a recently renovated site which, in the summer of 

2015, was restored to natural habitat after the removal an asphalt parking lot. Gold 

Creek Stockpile is located approximately 3 km southeast of the Snoqualmie Pass 

summit, 0.1 km north of Lake Mardee Rd (NF-4832), approximately 0.18 km north of I-

90. Gold Creek Stockpile consisted of 2 ponds at the time of sampling, with the ground 

mostly free of foliage, cascades frogs were found breeding in the southern most pond 

which was on average about 1 m in depth and lacked riparian or in water vegetation. 

The egg mass where samples were taken was partially dehydrated and spread on the 

bank of the pond, showing the water level had reduced substantially since the egg mass 

was deposited. Two other egg masses were present at the time of sampling; however, 

the egg mass with the most eggs submerged with the highest signs of infection were 

chosen for sampling.  

Mardee Lake was the most remote site, located approximately 3.1 km southeast 

of Snoqualmie pass summit, approximately 0.4 km east of NF-9090 Rd, 0.64 km north of 

I-90. Mardee Lake was very similar to Swamp Lake in terms of size, depth, and foliage. 

Only Cascade frog eggs were found at Mardee Lake with the largest egg mass being 

approximately 2 m long x 1 m wide x 0.5 m deep.  

Sampling and Sequencing Preparation 

 Water samples were taken as close to the edge of the egg mass as possible near 

areas of active infection, avoiding the capture of tadpoles and plant debris, using two 

sterilized 300 mL centrifuge bottles per site. Active infection was identified as eggs with 
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large hyphal structures present, samples were taken where multiple eggs were showing 

infection. When western toad and cascade frog eggs were both present, one sample 

was taken at the highest infection site for each species. Samples were then filtered using 

Millipore HV sterile 0.45 µm vacuum filtration cups (EMD Millipore, Burlington, MA). 

The filter was aseptically removed from the cup, cut into quarters, and separated into 

1.7 mL sterile tubes. Samples were stored at 20⁰C for 24-48 hours prior to DNA 

extraction and PCR.   

Extraction was performed using a modified hotSHOT technique (Truett et al. 

2000), with the addition of 0.1 mL of .05 mm sterile glass bead and two 2 mm sterile 

glass beads to each sample; followed by a one minute of bead beating prior to 

incubation at 95⁰C for one hour. Following extraction, samples were then amplified 

using ITS5 and ITS4 primers to select for oomycetes (White et al. 1990). PCR conditions 

were optimized by a preliminary experiment using a DNA extract from a mixed culture 

of oomycetes isolated from Swamp Lake. Water samples were taken from this mixed 

culture and extracted using the same method as the pond samples. From these samples 

several temperature protocols and primers were tested and the amount of DNA from 

extraction was varied to maximize DNA amplification. PCR was performed using a 

touchdown temperature protocol decreasing annealing temperature from 58°C to 50°C, 

stepping down 2°C every 5 cycles, for a total of 40 cycles. This approach prioritizes 

individuals that matched the primers well, while allowing for amplification of less 

abundant individuals (Hecker and Roux 1996). PCR was performed in 25 µL aliquots 

using PCR buffer at recommended concentration, 2.5 mM MgCl2, 200 µM of dNTPs, 0.4 
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µM of each primer (ITS5 and ITS4), 1.25 units Taq DNA polymerase, and 5 µL of each 

DNA extract. Following PCR, samples were run on a 1% agarose gel with ethidium 

bromide and imaged using a UV transilluminator. For each site, the four 25 µL PCR 

products showing the highest amplification visually were combined and purified using 

QiaQUICK PCR Purification Kit (Qiagen LLC, Germantown, MD). The DNA samples were 

eluted in 45 µL of TE buffer for library preparation.  

Samples were prepared following a modified library preparation protocol 

supplied by Oxford Nanopore for whole genome sequencing with the minION sequencer 

(Oxford Nanopore Technologies, Oxford, UK). Each sample was modified using NEBNext 

Ultra II end repair mix (New England Biolabs, Ipswich, MA) to leave TA ends on each 

DNA strand. Following end modification, Oxford Nanopore sequencer adapters were 

attached to the sample DNA using TA ligase (New England Biolabs, Ipswich, MA). The 

adapter mix included what is necessary to pull the DNA through the pore and a loop 

connecting both complimentary strands so that the sequencer would be able to read 

the forward and reverse strands of each sample. Sequencing both complimentary 

strands results in two dimensional (2D) reads with higher accuracy than single stranded 

(1D) reads (Jain et al. 2016). The DNA was then purified using magnetic streptavidin 

beads (New England Biolabs, Ipswich, MA) to remove any non-nucleotide molecules and 

remaining small fragments of DNA, including unbound TA-adapters. DNA was eluted 

from the beads using Oxford Nanopore running buffer. Sequencing was performed using 

Oxford Nanopore minION sequencer using an R9.2 flow cell. Each site was allotted 24 
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hours of run time, the flow cell was flushed between samples using a flow cell wash kit 

(Oxford Nanopore Technologies, Oxford, UK).  

Sequence Processing 

 Minknow (Oxford Nanopore Technologies, Oxford, UK) was used to 

collect the DNA sequences from the Nanopore sequencer. Sequence data was then 

uploaded to Metrichor (Oxford Nanopore Technologies, Oxford, UK) for basecalling and 

initial quality filtering. Sequences that were 1D or failed Metrichor quality filtering were 

removed from the dataset. Poretools (Loman and Quinlan 2014) was used to then 

extract the sequences into .fasta file format for input into FungalITSPipeline (Nilsson et 

al. 2009) and NanoOK (Leggett et al. 2016). This analysis pipeline is shown in Figure 2. 

FungalITSPipeline was used as a means of reducing the UNITE fungal database 

(public release 28.06.2017) to a usable size for NanoOK. Each sample was aligned to 

sequences in the UNITE database resulting in a possible 10 best matches by e-score for 

the ITS 1 and its 2 regions individually. Every reference sequence which passed the 

pipeline’s quality filter was then extracted from the UNITE database by Samtools 

(http://www.htslib.org/) to generate a truncated database for input into NanoOK. 

NanoOK is a program designed to deal with Nanopore data using optimized LAST 

(https://gitlab.com/mcfrith/last, Tokyo, Japan) alignments to align each sequence. LAST is 

an alignment tool that has been shown to be more accurate than, widely used, Basic 

local alignment search tool (BLAST) (NCBI, Bethesda, MD) when dealing with Nanopore 

data as it penalizes less for insertions and deletions that are prevalent in Nanopore data 
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compared to BLAST along with other alignment optimizations for Nanopore data (Jain et 

al. 2015).  

 

 

Figure 2: Sequence analysis flowchart.  

NanoOK reports the number of sequences that match each reference from the 

UNITE database. Due to the low quality of the sequencing data and the lack of ability to 

check for chimeric sequences, there is low confidence in the identification to species 

level assigned by NanoOK. Instead, each group assigned by NanoOK was treated as an 
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operational taxonomic unit (OTU) most likely representing a unique group, as standard 

distance-based assignment of phylotype was unavailable. NanoOK calculates alignment 

scores for each sequence and assigns identity based upon the highest alignment score. 

Ecological evaluations were made from the output of NanoOK by treating each match to 

an OTU as a proxy for relative abundance (O’Brien et al. 2005). In order to ensure 

accurate recovery of oomycetes, it was confirmed that oomycete reference sequences 

were included in the truncated database prior to analysis. Additional oomycete 

references were added to the database from Genbank (NCBI) after initial analyses found 

poor recovery, and NanoOK analyses were rerun.  

Community Structure Analysis 

For this experiment, multiple traditional measures of biodiversity were used to 

evaluate the communities at each site. R version 4.1.0 (R Core Team 2020) was used in 

the Rstudio (Rstudio team 2021) environment with biodiversityR (Kindt and Coe 2005) 

and vegan (Oksanen et al. 2020) packages for all diversity index calculations. A species 

accumulation curve was calculated with error bars sampled randomly 1000 times using 

biodiversityR (https://cran.r-project.org/web/packages/BiodiversityR/index.html) and 

vegan (https://cran.r-project.org/web/packages/vegan/index.html) to evaluate OTU 

recovery with sampling effort (Ugland et al. 2003; Kindt and Coe 2005; Oksanen et al. 

2020). A Renyi diversity profile plot was generated using biodiversityR to assess relative 

diversity as indices increase in dominance influence (Kindt and Coe 2005).  
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Alpha diversity measures were used to evaluate the overall health of sampled 

habitats by looking at OTU richness and evenness. Shannon’s diversity is one of the most 

common diversity indices used across ecological studies (e.g. Magurran 1988; Krebbs 

2001). Shannon’s diversity was used for this study as the data fit the assumptions of this 

index. Oomycete and Fungal spores are indefinite in the water column and, based upon 

initial results, nearly all available individuals sampled were recovered. Inverse-Simpson’s 

index was used as a dominance measure to evaluate diversity weighted by the most 

abundant individual OTUs present in each sample (Simpson 1949; Magurran 1988).  

Beta diversity indices were used to evaluate the compositional differences 

between sampling sites. For this purpose, the Sorenson-Dice index (Southwood 1978) 

and the Jaccard Distance index were calculated (Janson and Vegelius 1981). Both indices 

do not consider the abundance of any individuals found, but rather compare the 

richness of OTUs found at each site.  

Functional Diversity 

For this experiment, the trophic modes of the OTUs represented at each site 

were evaluated. Using the tool FUNGuild (Nguyen et al. 2016) trophic modes were 

assigned to OTUs based upon the taxonomic data available from the UNITE database 

and is referenced to a curated database of trophic mode identifications. The FUNGuild 

database assigns trophic modes and guilds to Fungi using published research of 

individual taxa. While assignments using FUNGuild are reliable, they are limited due to 

the incomplete nature of the current database. Trophic mode was determined to be 
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more appropriate for this application, as ecological guilds produced highly nested results 

and provided little clarity for the dataset. This analysis provides a look into the different 

ecological niches of OTUs recovered in this survey.  
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CHAPTER III 

RESULTS 

Sequencing 

  Initial quality filtering began during the basecalling process where the output 

from the sequencer is converted into the actual DNA sequence. Metrichor gives a 

quality rating based upon the signal quality of each read; additionally, this program sorts 

sequences by strand direction and 2D reads. Only 2D sequences from the basecalling 

procedure were used to remove redundancy from having matching strands and as a 

quality filter, 2D sequences have ~10% higher accuracy on average. Even with higher 

accuracy, still only 10.93% of the 322 711 reads passed initial quality filters across all 

sites as shown in Table 1. Swamp Creek and Mardee Lake produced lower pass 

percentage and lower overall throughput than the other two sites.  

Table 1: Metrichor quality filtering during basecalling of 2D sequences.   

 Site Pass  Fail Total Reads Pass % 

Swamp Lake 15 377 107 008 122 385 12.56 

Swamp Creek 760 24 773 25 533 2.97 

Mardee Lake 3 136 65 225 68 361 4.58 

Gold Creek 16 011 90 421 106 432 15.04 

Total 35 284 287 427 322 711 10.93 

Mean 8 821  71 857  80 678  
 

The passed sequences were then used to query the UNITE fungal database using 

FungalITSPipeline in order to produce a truncated database for use with NanoOK. The 
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FungalITSPipeline does include the ability to chimera check sequences since it queries 

the ITS1 and ITS2 regions separately. This step is very important when using the ITS 

region for DNA barcoding as chimeras, DNA sequences made from more than one 

individual, are generated regularly during the PCR process (Wang and Wang 1997). 

However, the lower accuracy of the Nanopore sequences made standard chimera 

checking unreliable with FungalITSPipeline.  

A Nanopore specific chimera checking tool was unable to be found or did not 

exist at the time of this experiment. Nanopore data is prone to insertion, deletion, and 

gap errors which are heavily penalized by traditional alignment tools used to perform 

chimera checking. The BLAST alignment tool used by the pipeline program is one of 

these unoptimized tools. The alignments produced by BLAST were not ideal but the 

individual matching of ITS1 and ITS2 reduced the effect of lower accuracy sequences 

and increased the recovered potential matches for the modified database.  

NanoOK 

NanoOK assigned a total of 20 479 reads matched across all sites with an average 

of 67% of sequences aligned. NanoOK was used as a means of OTU assignment through 

alignment score to the UNITE database of reference sequences. NanoOK identified 566 

OTUs across all sites, representing 17 phyla. As a consequence of lower throughput, 

Swamp Creek had the lowest matched sequences with only 586. Of all the sites Gold 

Creek had the lowest match rate at 29.75% with the other three sites ranging between 

77.11%-81.96% as shown in Table 2. This discrepancy could indicate that the sequences 
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are either of low quality, high in chimeras, or that the individuals represented were not 

included in the UNITE database. Most likely the latter being the case.  

Table 2: NanoOK quality filtering statistics.  

 Site Matched Unmatched Total Match % 

Swamp Lake 12 603 2 774 15 377 81.96 

Swamp Creek 586 174 760 77.11 

Mardee Lake 2 526 610 3 136 80.61 

Gold Creek 4 764 11 247 16 011 29.75 

Total 20 479 14 805 35 284   

Mean 5 119.75  3 701.25  8 821  67.38 

  

The phyla found at each site are summarized in Figures 3-6. Each site shows a 

mixture of terrestrial and aquatic phyla primarily from the kingdom of Fungi. The 

Chromista, includes water molds, was strongly represented at each site, with Mardee 

Lake showing exceptionally lower Chromista than the other sites.  

Unfortunately, the Chromista reference sequences matched lacked further 

taxonomic information, water. All 3 544 Chromista sequences recovered matched to 2 

reference sequences from uncultured individuals recovered from 2 different soil studies 

(Hollister et al. 2010; Lan 2015). Additional oomycete references were added to the 

truncated database and analyses rerun, this resulted in less than 5% of the previously 

matched Chromista sequences being identified mostly as members of Pythium and 

Phytophthora, plant pathogenic water molds typically found in soils or plants (Lucas et 

al. 1991; Arcate et al. 2006). It is possible that zoospores were not collected, and a close 

relative of the oomycetes was instead recovered. Without further study, it cannot be 
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determined if the lack of recovery is due to low sequence quality or a problem with 

sampling.  

The fungal taxa recovered were highly aquatic as expected and in the rough 

proportions to be expected as well (Goh and Hyde 1996; Shearer et al. 2007; Hu et al. 

2013). A low-level recovery of terrestrial fungal phyla was observed across all sites. 

While there was some variation between sites, the Ascomycota and Chytridiomycota 

were the highest represented phyla overall. One surprise is the recovery of 

Rozellomycota in such high numbers, this basal group of Fungi are pathogens to a 

number of micro-organisms including other Fungi, oomycetes, and arthropods (Corsaro 

et al. 2016).  

 

Figure 3: OTU Abundance of phyla at Mardee Lake. X-axis varies by site.    
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Figure 4. OTU abundance at Swamp Creek. X-axis varies by site.    

 

Figure 5. OTU abundance at Swamp Lake. X-axis varies by site.    
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Figure 6. OTU abundance at Gold Creek Stockpile. X-axis varies by site.    

As a survey of the Snoqualmie Pass corridor, the species accumulation curve 

shown in Figure 7 shows that, with only four samples, the data is approaching the OTU 

plateau; suggesting that a significant amount of the sampled population was recovered. 

The species accumulation curve indicates that as a survey method, the metabarcoding 

approach is an efficient method to observe the sampled habitats.   
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Figure 7: OTU accumulation curve of all sites. Error bars sampled randomly 1000 times.  

Traditional Diversity 

 In terms of alpha diversity measures, shown in Table 3, lower richness and 

abundance were observed at Swamp Creek. Swamp Creek is comparable to Mardee 

Lake and Gold Creek Stockpile in mean reads per OTU at 7.3, 12, and 10 respectively. 

Swamp Lake had the highest mean individuals per OTU but scored the lowest in both 

diversity indices, indicating that this mean was likely heavily skewed by high abundance 

of the dominant OTUs. Gold Creek Stockpile was the most diverse site by both diversity 

indexes, likely influenced by it having the highest richness. Of note, Shannon’s index was 

not much higher for Gold Creek Stockpile compared to the other sites, but the Inverse-

Simpson’s index indicates that it is likely not as heavily dominated as the other sites 

which all scored similarly.  
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Table 3: Alpha diversity indices measured at each site.  

Index Sites 

 
Mardee 
Lake 

Swamp 
Creek 

Swamp 
Lake 

Gold Creek 
Stockpile 

Richness 210 80 237 477 

Abundance 2 528 586 12 603 4 764 

Mean individuals per OTU 12.0 7.3 53.2 10.0 

Shannon’s diversity 3.0 2.8 2.5 4.3 

Inverse-Simpson's 8.0 8.7 7.2 21.0 

 

The Renyi diversity profile plot shown in Figure 8, compares the diversity values 

of each site as dominance increases to assess community structure. Gold Creek 

Stockpile at all points is higher at all points than the other three sites as a result of 

higher abundance. The similarity of the curves observed indicate that the community 

structures at each site were also similar. Swamp Creek had a slightly flatter profile, 

indicating that is slightly more evenly distributed.  

The Sorenson-Dice index (Table 4) and Jaccard distances (Table 5) evaluate the 

beta-diversity of the four sites. These indices identify compositional differences 

between sites. While Gold Creek Stockpile differed most from Mardee Lake by Jaccard 

distance, but Swamp Creek by Sorenson-Dice index. Swamp Creek overall was the least 

similar to all other sites by Sorenson-Dice index, this could be due to Swamp creek 

having the lowest overall richness of only 80 OTUs, all other sites had greater than 210 

OTUs. 
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Figure 8: Renyi diversity profile plot showing each site as alpha increases on the x axis comparing diversity 
on the y axis. As alpha increases, the diversity is less weighted by richness and more heavily weighted by 
dominance of individuals. Sites shown are: Mardee Lake (triangle with dotted line), Swamp Creek (circle 
with dashed line), Swamp Lake (square with solid line), and Gold Creek Stockpile (diamond with dashes 
and dotted line).  

   

Based upon Jaccard distance, Swamp Creek was the most similar to Swamp Lake 

than any other pairing of sites. The least similar sites by Jaccard distance were Gold 

Creek Stockpile and Mardee Lake, which showed the second highest similarity by 

Sorenson-Dice. Overall, the compositional comparison shown in Table 3, indicates all 4 

sites represent very similar communities.  

 

0

1

2

3

4

5

6

7

0 0.25 0.5 1 2 4 8 ∞

D
iv

er
si

ty

α



32 
 

Table 4: Sorenson-Dice index matrix comparing each pair of sites. 

Sorensen-Dice Mardee Lake Swamp Creek  Swamp Lake 

Swamp Creek 0.3399    

Swamp Lake 0.4838 0.3123   

Gold Creek Stockpile 0.4865 0.3037 0.5014 
 

Table 5: Jaccard distance index matrix comparing each pair of sites. 

Jaccard Distance Mardee Lake Swamp Creek  Swamp Lake 

Swamp Creek 0.8262    

Swamp Lake 0.8444 0.9528   

Gold Creek Stockpile 0.7525 0.8700 0.8250 

Functional Diversity 

The functional diversity at each site was determined using FUNGuild to assign 

trophic modes to each OTU. Gold Creek showed more than double the proportion of 

symbiotrophic individuals compared to the other 3 sites as shown in Figure 9. 

Symbiotrophic individuals represent mycorrhizal Fungi and lichenized Fungi which are 

symbionts with another species; symbiotrophs are typically hard to detect due to 

limited spore production compared to other Fungi. Mycorrhizal and lichenized Fungi are 

almost exclusively found in terrestrial habitats. Saprotrophic individuals were the most 

heavily represented overall, showing the highest proportion of assigned individuals. 

Microfungi make up the majority of representatives from the pathotroph-saprotroph-

symbiotroph mode; this group is the second most represented across all sites and 

represents individuals that are adaptable to their environment, capable of occupying a 
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variety of habitat niches. However, 91.22% of all individuals were not able to be 

assigned by FUNGuild due to lack of information in the underlying database which relies 

upon published research for trophic mode assignments. OTU’s aligned with sequences 

for Cladosporium sp., the most common genus of fungal spore in the air, was unassigned 

despite being found more frequently than any other Fungi due to a lack of research 

supporting an assignment.   

 

Figure 9: Proportion of assigned OTUs for each trophic mode at each site. Gold Creek Stockpile is black, 
Swamp Lake is light grey, Swamp Creek is white, and Mardee Lake is dark grey. 
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CHAPTER IV 

DISCUSSION 

Nanopore Metabarcoding 

 The Oxford Nanopore MinION was chosen for its ability to sequence the entire 

ITS region at a lower cost compared to Pyrosequencing at the time of this study. The 

lower basecalling accuracy of the minION (~90% for the R9 chemistry used in this study) 

compared with its competitors Illumina (99.5%) and Sanger sequencing (99.9%) also 

presented challenges for bioinformatics and reduced confidence in OTU assignments. 

(Jain et al. 2016; Winand et al. 2020).  

The inability to perform traditional sequence quality checks, for example 

chimera checking, contributed to this lack of confidence. The low basecall accuracy also 

hindered phylogenetic distance analysis to assign phylotype, as sequences are only as 

close as the accuracy of the sequencer allows. Phylotype assignment typically occurs at 

97% similarity, at ~90% accuracy all samples fall outside of that threshold just by 

random error, so nearly all individuals would appear as a unique phylotype. The high 

insertion, deletion, and gap error in Nanopore data prevented the use of standardized 

bioinformatics tools, such as Qiime (http://qiime.org/) and Mothur 

(https://mothur.org/), forcing analysis to rely on Nanopore specific tools still in 

development.  

The throughput achieved in this experiment was 322 711 reads, which is 

considerably less than the yield from current Illumina chemistry of greater than 1 million 
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paired end reads per sample, but significantly greater than achievable with Sanger 

sequencing which only produces one sequence per sample (Sanger 1977; Winand et al. 

2020). However, differences in throughput between samples created problems with 

ecological analyses. This could be due to variations in pore availability between the two 

flow cells used or due to non-nucleotide contamination in prepared libraries. All 

sequencing libraries were processed using the same reagent lots, so reagent and 

preparation variability is minimal. Ultimately, throughput inequality showed to be an 

influential factor in ecological analyses performed in this study.  

As used in this study, the minION was determined to be less than ideal for ITS 

metabacoding; however, the minION has been shown to be better suited for genome 

sequencing where the depth of coverage and long read lengths can help to error correct 

and aid alignment to templates (Laver et al. 2015; Greig et al. 2019). While 

advancements in chemistry have increased accuracy, currently 98.3%, from the R9.2 

chemistry used in this experiment, the lack of Nanopore specific bioinformatic tools for 

barcoding is a hinderance for its use for ITS metabarcoding (Morrison et al. 2020).  

Variability in flow cell throughput makes consistency difficult and the increased 

cost of using a new flow cell for every sample makes this technology comparable in cost 

to Pyrosequencing. Illumina sequencing has come down considerably in cost and current 

read lengths allow for full sequencing of the ITS (Rocchi et al. 2017). These factors make 

Illumina a much more promising technology for metabarcoding moving forward. 

Sequence data generated by the Illumina chemistry can also be used with most 

bioinformatics tools currently available.  
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eDNA Methods 

 The methods used in this study, eDNA sampling with a single filtration step, were 

designed to have as little bias as possible. By performing a single filtration, spore loss 

due to repeated filtration was reduced as well as cost. While members of Chromista 

were captured, the water molds present near western toad and cascades frog mating 

sites were unable to be assessed.  

The Chromista OTUs accounted for 17.3% of all reads, with 3 544 individuals 

matched across all sites. The only 2 Chromista OTU references initially matched are from 

uncultured DNA found in 2 different soil studies (Hollister et al. 2010; Lan 2015). No 

other taxonomic information was available for these sequences. The follow up analysis 

recovered low levels of Phyophthora and Pythium (<5% of previously matched 

Chromista sequences) which are plant pathogenic oomycetes. One possibility is the lack 

of recovery is due to poor sequence quality and that the sampling methods used in this 

experiment captured zoospores. Another possibility is that close relatives of the 

oomycetes were recovered and not the oomycetes themselves since oomycete 

references were confirmed to be included in the database used for OTU assignment. 

The last possibility is that the chemotactic ability of oomycetes keeps individuals closer 

to the egg mass then can be sampled (Van West et al. 2002). However, without more 

accurate sequence data, it is unclear why the survey failed to recover oomycetes.  

A comparison study was considered using culture methods or collection of 

infected eggs at the same time water samples were taken, there was sufficient funds 
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available to Sanger sequence any isolates. Morphological identification, as discussed in 

the introduction, is problematic, at best individuals could have been identified to genus. 

Previous studies at Swamp Lake could have been used as a reference; however, the lack 

of recovery of oomycetes means such a comparison is unnecessary.  

Fungal Community Recovery 

 As a survey, the environmental metabarcoding of aquatic samples used in this 

study recovered a wide range of Fungi. The phyla recovered were in expected 

proportions based upon known aquatic habitat usage among Fungi (Goh and Hyde 1996; 

Shearer et al. 2007; Hu et al. 2013). The Chytridiomycota and Ascomycota were the two 

most abundant groups across all sites; chytrids are a water adapted group which 

produces motile spores, and the Ascomycota includes ubiquitous saprotrophs capable of 

utilizing a wide range of habitats. The recovery of terrestrial phyla could be due to the 

lakes, ponds, and creeks sampled being shallow enough to allow terrestrial Fungi to 

grow or they could be acting as a spore sink for airborne spores. Lakes have been shown 

to act as pollen and spore sinks allowing study of past flora from waterbed sediments 

(Mudie et al. 2021). The methods used in this study could provide an avenue for the 

survey of aquatic fungal communities and to a lesser degree the survey of spore 

availability in the surrounding forest.  

 The survey conducted in this experiment is a proof of concept for the eDNA 

methods and minION sequencer used. As shown in Figure 7, the majority of OTUs 

present collected by the methods used were recovered in just 4 samples. However, it is 
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likely that the number of OTUs captured is likely smaller than what the data suggests. 

Due to the basecalling error rate of the minION chemistry used in this study, the 

alignment accuracy of the sequences likely produced false OTUs. The ITS region being 

600-800bp long, does not require a large difference in sequence to identify an organism; 

so, it is likely that the random error of the Nanopore sequence data could cause a false 

match to an OTU not actually present in the sample. Additionally, the inability to 

perform chimera checking during data analysis means there are likely some OTUs that 

represent chimeric sequences or closely related species not present in the sites 

sampled.   

The analysis workflow used in this experiment generally follows workflows from 

established pipelines such as PIPITS for Illumina data (Gweon et al. 2015). The main 

difference being the separation of the ITS1 and ITS2 sequences for each read done by 

PIPITS allowing chimera checking and determining OTUs based upon distance between 

sequences rather than by match quality to refence sequences. As stated above, the 

phylogenetic distance from Nanopore data is only as close as the error rate allows us to 

observe. Assignment of OTUs based upon match to reference, as opposed to 

phylogenetic distance, is less representative of the individuals present; especially with 

high error causing closely related species to be matched falsely. These factors likely 

produced an overly diverse appearing dataset, with higher species richness than present 

in the water column. 
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Traditional Diversity 

Ecological diversity observed was very similar among the sites sampled. Gold 

Creek Stockpile stood out in most diversity measures, as the site with the highest 

richness. Inverse-Simpson’s index indicated that Gold Creek Stockpile was less 

dominated by few OTUs than the other sites. The Renyi diversity profile plot in Figure 8 

showed that all sites had similar community structure. The experimental design of this 

project, as a result of funding limitations, did not allow for sample replication; as such, 

traditional comparisons of diversity indices, such as ANOVA or Kruskal-Wallis test, were 

not able to be performed.  

Compositionally, all 4 sites appeared very similar by Sorenson-Dice and Jaccard 

distance measures. It is possible with more accurate sequencing, and subsequent OTU 

assignment, that variances detected by diversity indices would equalize. More even 

throughput could also influence the diversity index values; especially the Sorenson-Dice 

index which appeared to be more sensitive to the differences in richness observed. 

Statistical methods have been proposed for correcting for unequal throughput when 

statistically comparing index values between sites and could improve the fidelity of 

Nanopore data when evaluating community structure (Willis 2019).  

Functional Diversity 

The trophic mode assessment performed using FUNGuild, confirmed that the 

individuals observed at Gold Creek Stockpile were slightly anomalous compared to the 
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other 3 sites. Symbiotrophic individuals were higher at Gold Creek Stockpile. These 

individuals are almost exclusively terrestrial mycorrhizae and lichenized Fungi. As 

expected, most individuals recovered were saprotrophic, almost all Fungi utilize some 

amount of saprotrophism. Microfungi were the second most abundant group found 

belonging to the pathotroph-saprotroph-symbiotroph mode. Microfungi produce a large 

number of spores and can utilize a wide range of habitats and niches. Overall, there was 

not much difference in functional diversity between the 4 sites. This result was not 

particularly surprising given the similarity in sites sampled for this experiment. However, 

the incomplete nature of the FUNGuild database left the majority of OTUs, 91.2% 

overall, with unassigned trophic modes. A more complete database could provide a 

more accurate evaluation of the trophic distribution of OTUs recovered. 

Future Research 

 Further PCR optimization could produce better throughput for the oomycetes; 

however, a more effective approach would probably be to use ITS primers more specific 

to oomycetes. Subsequent to this study, oomycete specific ITS primers have been 

developed (Riit et al. 2016). With better targeted ITS primers combined with a more 

accurate sequencing technology, the eDNA sampling and filtration methods used in this 

study could be an effective tool for studying water molds and Fungi (Riit et al. 2016, 

Ruiz-Gomez et al. 2019).  

A follow up to this study is necessary to determine if the eDNA sampling used in 

this study can collect oomycete zoospores near an active site of amphibian 
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saprolegniasis. A study using oomycete specific primers with Illumina chemistry, should 

provide sufficient data to determine if pathogenic oomycetes can be recovered via the 

sampling methods used in this study. If successful, future studies should explore the 

sampling biases of this approach, such as sampling depth, location, and time of 

collection, as an important next step before more complex ecological comparisons can 

be made using this study’s methodology.  

If unsuccessful at capturing zoospores near infections, sampling locality could be 

varied to determine if potential pathogens are available for capture away from active 

saprolegniasis; if they are, the absence of individuals near infections if found 

consistently elsewhere could be inferred as an indicator of pathogenicity. Confirmation 

of this could be determined by an infected egg collection at the same time of sampling 

and metabarcoding analysis of individuals recovered to confirm their presence at 

infection.  

Future fungal ecological studies, using the environmental metabarcoding 

methods of this experiment, are certainly promising. Fungal specific ITS primers and 

optimized PCR conditions could further improve recovery of Fungi and more accurate 

basecalling could provide better fidelity of aquatic fungal communities. As with the 

oomycetes, exploration of sampling biases is an important next step before more 

complex ecological comparisons can be made using this study’s sampling and filtering 

methodology.  
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Conclusions 

  In conclusion, the minION sequencer and environmental metabarcoding 

methods used in this study failed to survey the oomycetes. The R9.2 flow cell chemistry 

used in this experiment did not provide basecalling accuracy or subsequent sequence 

matching sufficient for confident OTU assignment to species or genus. Throughput 

inconsistency between samples also influenced ecological analyses. Overall, the 

Nanopore sequencer was not optimal for the environmental metabarcoding approach 

used in this study. To improve oomycete recovery, the PCR optimization strategy used in 

this study could be improved by using oomycete specific ITS primers that had not been 

developed at the time of this study (Riit et al. 2016). Improved oomycete DNA 

amplification combined with a more accurate sequencing platform, such as Illumina or 

Pyrosequencing, could be used to determine if the sampling approach used in this study 

is effective at capturing zoospores.  

 Fungal recovery in this study was higher than anticipated. Phyla composition 

reflects high abundance in aquatic taxa with lower recovery of terrestrial taxa. Alpha 

and beta diversity analyses were affected by throughput inequality. As a result, all four 

sites appeared very similar in composition and community structure. Trophic mode 

analysis also returned expected results based upon taxa recovered. Further expansion of 

the FUNGuild database is important to increase confidence trophic modes and guilds 

represented in analyses are close to sampled populations.  



43 
 

 Future studies should refine methodology for both oomycete and Fungi. 

Exploration of methodological biases is an important step to more complex ecological 

questions of aquatic habitats.  
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