Using a Spreadsheet to Solve the Schrödinger Equations for H$_2$ in the Ground and Excited States

Jacob Buchanan
Department of Chemistry
Central Washington University
“I think you should be more explicit here in Step Two.”
By Sidney Harris, Copyright 2007, The New Yorker
Goals

Better understanding of quantum chemistry

- by visualizing quantum phenomena on a spreadsheet
- by solving Schrödinger equation for molecules by hand
- by breaking the total energy into pieces
 - Kinetic energy of each electron.
- by hand calculating exchange and correlation energy on a spreadsheet.
Prior Knowledge

- Multivariable differential and integral calculus
- Quantum mechanical postulates:
 \[\hat{\mathcal{H}} \psi = \varnothing \psi \]
 \[\langle \mathcal{O} \rangle = \frac{\int \psi \hat{\mathcal{O}} \psi d\tau}{\int \psi \psi d\tau} \text{ (when } \psi \text{ is a real function.)} \]
- Linear algebra and differential equations are not required
- Experience with Excel or Google spreadsheet
Quantum chemistry exercises on a spreadsheet

- Ex. 1. Visualization of tunneling effect in a H atom
- Ex. 2. Visualization of particle-like properties of waves
- Ex. 3. Solving the Schrödinger equation for H$_2^+$ and H$_2$
- Ex. 4. Exchange energy in H$_2^*$: first singlet vs triplet excited states
- Ex. 5. Correlation energy in H$_2$: a 2-determinant wave function
Ex. 1. Visualization of tunneling effect in a H atom

\[\frac{-1}{2} \nabla^2 \psi - \frac{1}{r} \psi = E \psi \]

Students can verify that \(\psi = e^{-r} \) is an eigenfunction with \(E = -\frac{1}{2} \) au.

<table>
<thead>
<tr>
<th>Radius (r)</th>
<th>Total E</th>
<th>Potential E</th>
<th>Kinetic E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.5</td>
<td>-1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>-0.5</td>
<td>-0.25</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

… … … … …
Ex. 2. Visualization of particle-like properties of waves

Double-slit diffraction patterns of electrons visually illustrate the wave-like properties of particles.
Ex. 2. Visualization of particle-like properties of waves

Photoelectric effects illustrate (less visually) the particle-like property of light.
Ex. 2. Visualization of particle-like properties of waves

Visualization of the particle-like property of waves on a spreadsheet:

\[\Psi = \frac{\cos(\theta) + \cos(2\theta) + \cos(3\theta) + \cos(4\theta)}{4} \]

<table>
<thead>
<tr>
<th>θ</th>
<th>cos(θ)</th>
<th>cos(2θ)</th>
<th>cos(3θ)</th>
<th>cos(4θ)</th>
<th>Ψ</th>
<th>Ψ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-0.99</td>
<td>0.96</td>
<td>-0.91</td>
<td>0.84</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>-2</td>
<td>-0.42</td>
<td>-0.65</td>
<td>0.96</td>
<td>-0.15</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>-1</td>
<td>0.54</td>
<td>-0.42</td>
<td>-0.99</td>
<td>-0.65</td>
<td>-0.38</td>
<td>0.14</td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0.54</td>
<td>-0.42</td>
<td>-0.99</td>
<td>-0.65</td>
<td>-0.38</td>
<td>0.14</td>
</tr>
<tr>
<td>2</td>
<td>-0.42</td>
<td>-0.65</td>
<td>0.96</td>
<td>-0.15</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>-0.99</td>
<td>0.96</td>
<td>-0.91</td>
<td>0.84</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Combination of many waves exhibit particle-like property

\[\Psi = \sum_{n=1}^{N} \frac{\cos(n\theta)}{N} \]

- $N = 1$
- $N = 10$
- $N = 100$

Number of values the momentum ($p = \hbar/\lambda$) may have:
- 1
- 10
- 100

Uncertainty of position

Uncertainty of momentum
Ex. 3. Solving the Schrödinger equation for H_2^+ and H_2

- Introduction to solving problems without analytical solutions.
- Nucleus positions fixed with a bond length of 1.5 a.u.
- Calculate every potential and kinetic energy component approximately.
- Need to evaluate integrals on a spreadsheet.
Integral calculation on a spreadsheet

• Using a spreadsheet to estimate the value of an integral:

\[\int_{-L}^{L} f(x) \, dx \approx \sum_{i=-L}^{L} f(i) \]

• For a fast decaying function \(f(x,y,z) \), the function value at several thousand randomly selected data points are calculated within a given volume.

• The product of the volume and the average function value is approximately the integral.
\[
\int_{-\infty}^{\infty} \Psi \hat{O} \Psi d\tau \approx V \frac{\sum_{i=1}^{N} \Psi(\tau_i) \hat{O} \Psi(\tau_i)}{N}
\]
$- \frac{1}{2} \nabla^2 (e^{-r}) = (\frac{1}{r} - \frac{1}{2}) e^{-r}$

<table>
<thead>
<tr>
<th>e^{-r_A}</th>
<th>e^{-r_B}</th>
<th>$\phi_A + \phi_B$</th>
<th>Attraction</th>
<th>Kinetic E</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>r_A</td>
<td>r_B</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.5</td>
<td>-2.4</td>
<td>1.5</td>
<td>2.4</td>
</tr>
<tr>
<td>-1.6</td>
<td>1.7</td>
<td>0.5</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>-0.5</td>
<td>1.2</td>
<td>-1.8</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>-0.5</td>
<td>-1.6</td>
<td>0.8</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.8</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>1.5</td>
<td>1.2</td>
<td>-0.7</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>-0.6</td>
<td>1.2</td>
<td>0.8</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.2</td>
<td>-1.8</td>
<td>-2.2</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>-1.6</td>
<td>0.2</td>
<td>0.4</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>1.8</td>
<td>1.4</td>
<td>2.9</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>-1.7</td>
<td>-0.8</td>
<td>0.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-1.2</td>
<td>-1.9</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Nucleus positions fixed with a bond length of 1.5 a.u.
No exchange energy between electrons with opposite spin.
Hartree product wave function $\psi = \sigma(1)\sigma(2)$ is used.
There are more columns but calculations can still be done conveniently on a spreadsheet.

<table>
<thead>
<tr>
<th>x₁</th>
<th>y₁</th>
<th>z₁</th>
<th>x₂</th>
<th>y₂</th>
<th>z₂</th>
<th>r₁A</th>
<th>r₁B</th>
<th>r₂A</th>
<th>r₂B</th>
<th>r₁2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>φ₁A</th>
<th>φ₁B</th>
<th>φ₂A</th>
<th>φ₂B</th>
<th>σ₁</th>
<th>σ₂</th>
<th>ψ</th>
<th>σ₁σ₂</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

-ψ²/r₁A -ψ²/r₁B -ψ²/r₂A -ψ²/r₂B ψ²/r₁2 \(\frac{1}{2} \psi \nabla^2 \psi \)

Attraction Repulsion Kinetic Energy
Average of 10 runs (each contains 8000 sampling)

- Potential E
- Total E
- Kinetic E
- e-e repulsion

Spreadsheet
HF/STO-3G
Range and standard deviation of 10 runs

-4 -2 0 2

a. u.

\(\text{H}_2^+ \) \(\text{H}_2 \)

Kinetic E e-e repulsion

Potential E

Total E

Attraction

Range and standard deviation of 10 runs
Comparison of H_2 energy calculated using spreadsheet and using HF theory with various basis sets
Ex. 4. Exchange energy in H$_2^*$: first singlet vs. triplet excited states

No 2 electrons can have the same set of quantum numbers.

Electrons with same spin can better avoid each other than electrons with opposite spin, which reduces the e-e repulsion. This reduction of e-e repulsion is called exchange energy.

The e-e repulsion for the S_1 state and T_1 state:

$$\langle \frac{1}{r_{12}} \rangle = \frac{\int \psi \frac{1}{r_{12}} \psi d\tau}{\int \psi \psi d\tau} \approx \frac{\sum \psi^2 / r_{12}}{\sum \psi^2}$$

$$\psi_{S_1} = (\sigma_1 \sigma^* _2 + \sigma_2 \sigma^* _1) \quad \psi_{T_1} = (\sigma_1 \sigma^* _2 - \sigma_2 \sigma^* _1)$$
Ex. 5. Correlation energy in H_2: $\psi_{gs} + C_{ex} \psi_{ex}$

- 2-determinant wave function that includes a parametric constant C_{ex} for the excited state determinant.
- Variational method to minimize E_{corr}.
- Minimum energy using the 2-determinant wave function compared to the HF energy with $C_{ex} = 0$.

![Energy Diagram](image)
Ex. 5. Correlation energy in H\textsubscript{2}: $\psi_{gs} + C_{ex} \psi_{ex}$

Using Hartree product functions to calculate correlation energy approximately for a H\textsubscript{2} molecule:

$\psi_{gs} = \sigma_1 \sigma_2$ \hspace{1cm} w/o correlation

$\psi_{corr} = \sigma_1 \sigma_2 + C_{ex} \sigma_1^* \sigma_2^*$ \hspace{1cm} w/ correlation

$$E_{corr} \approx \frac{\sum (\psi_{corr}^2/r_{12})}{\sum \psi_{corr}^2} - \frac{\sum (\psi_{gs}^2/r_{12})}{\sum \psi_{gs}^2}$$
Acknowledgements

• Benjamin Livingston (CWU Alumnus pursuing PhD in Math at Oregon State University)
• Dr. Robert Rittenhouse
• CWU COTS Summer Writing Grant & Faculty Development Fund (YG)
• CWU Office of Graduate Studies & Research Faculty Travel Fund (YG)
• CWU Department of Chemistry
Questions?
Difference between S_1 and T_1 excited states:

$\sigma\alpha^1\sigma^*\beta^1$ (S1) \hspace{1cm} \sigma^*\alpha^1\sigma^*\beta^1$ (T1)

w/o exchange \hspace{1cm} w/ exchange

Use Hartree product $\psi_{HP} = \sigma_1\sigma^*_2$ \hspace{1cm} Use determinantal ψ_{det}
Exchange energy is the essentially the difference between repulsion of electrons with same spin vs. repulsion of electrons with opposite spin.

\[
\sigma_1 \sigma^*_2 - \sigma_2 \sigma^*_1 \]

\[
\text{Exchange } E \cong \frac{\sum \psi_{\text{det}}^2/r_{12}}{\sum \psi_{\text{det}}^2} - \frac{\sum \psi_{HP}^2/r_{12}}{\sum \psi_{HP}^2}
\]
\[- \frac{1}{2r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right) \right] \psi - \frac{1}{r} \psi = E \psi \]

\[- \frac{1}{2r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right] e^{-r} \]

\[= \frac{1}{2r^2} \left[\frac{\partial}{\partial r} \left(r^2 e^{-r} \right) \right] \]

\[= \frac{1}{2r^2} \left(2re^{-r} - r^2 e^{-r} \right) \]

\[= \left(\frac{1}{r} - \frac{1}{2} \right) e^{-r} \]
H atom calculations

- Familiarize students with spreadsheet format.
- Calculation of kinetic energy and potential energy.
- Comparison to analytical solution.
Compilation

- Results from each student compiled using Google spreadsheet
- Results averaged and compared to HF/STO-3G calculations and experimental data.