In cities, urban stream syndrome affects natural creeks/rivers by degrading water quality, increasing peak flow and decreasing the diversity of aquatic insect and fish communities. Urban streams are also often buried to support infrastructure. Stream burial could alter food resources used by aquatic insect communities, but the effects of burial on insects is largely unknown. I measured total suspended sediments (TSS), fine benthic organic matter (FBOM), chlorophyll (Chla), phosphorus (P), and the insect communities themselves. TSS, FBOM and Chla are metrics of insect food resources and P is a primary predictor of Chla.

I sampled 2 locations on each of the three creeks that flow through Ellensburg, and each sample location had a site upstream and downstream of a buried stream segment. When streams are buried, they no longer support infrastructure. Stream burial could alter food resources used by aquatic insect communities, but the effects of burial on insects is largely unknown. I measured total suspended sediments (TSS), fine benthic organic matter (FBOM), chlorophyll (Chla), phosphorus (P), and the insect communities themselves. TSS, FBOM and Chla are metrics of insect food resources and P is a primary predictor of Chla.

Methods

- **TSS**: a 1 liter sample was collected at each site and filtered to collect a sample. The filters were put into pans and dried. Next they were weighed then put in a furnace. From there they were re-wetted, dried and weighed again to measure mass lost on ignition which represents organic matter content. (See Figure 3)
- **FBOM**: collected off of the bottom of the creeks by suspension. Theses samples were filtered and processed same way as TSS. (See figure 3)
- **Chla**: samples were scraped from rock surfaces with a wire brush and rinsed into a small cup. Subsamples were filtered and frozen. Chlorophyll was extracted in a hot bath with ethanol, and measured on a spectrophotometer. (see figure 2)
- **Phosphorus**: stream water samples were filtered into small bottles and then frozen. Dissolved phosphorus concentration was measured using colorimetric methods on a spectrophotometer along with a calibrated standard curve.

Results

- **EPT/D averages of the insect communities, comparing upstream to downstream sites**
 - p = 0.31

- **TSS averages from upstream downstream sites**
 - p = 0.50

- **FBOM averages between upstream and downstream sites**
 - p = 0.47

Conclusion

I found no significant difference in chlorophyll a, FBOM, or TSS between the upstream and downstream sites. This suggests that stream burial does not affect these key insect food resources. However, I found higher phosphorus concentrations upstream of a buried stream segment compared to downstream implying net phosphorus uptake in the buried reach. I also didn’t find a difference in EPT/D between upstream and downstream sites, indicating no difference in environmental quality among site. Overall, these results suggest that the overarching environmental effect on urbanization on streams is a more important control on food resources and insect communities than the effect of burial.

Next Steps

The next step for this research is to measure NH4+ (ammonium) concentrations to see if there is a significant difference from stream burial. Also, identifying insects at a more specific taxonomic level could reveal more refined differences between the communities upstream and downstream of buried stream segments.

Acknowledgements

I would like to thank my research assistant Ian Daling for all of his help with the insect identification throughout Winter and Spring 2015 quarters. This wouldn’t have been made possible without his help. I would also like o thank Nathan Regal for helping with species identification spring 2015.