Document Type


Department or Administrative Unit

Computer Science

Publication Date



Geospatial data analysis relies on Spatial Data Fusion and Mining (SDFM), which heavily depend on topology and geometry of spatial objects. Capturing and representing geometric characteristics such as orientation, shape, proximity, similarity, and their measurement are of the highest interest in SDFM. Representation of uncertain and dynamically changing topological structure of spatial objects including social and communication networks, roads and waterways under the influence of noise, obstacles, temporary loss of communication, and other factors. is another challenge. Spatial distribution of the dynamic network is a complex and dynamic mixture of its topology and geometry. Historically, separation of topology and geometry in mathematics was motivated by the need to separate the invariant part of the spatial distribution (topology) from the less invariant part (geometry). The geometric characteristics such as orientation, shape, and proximity are not invariant. This separation between geometry and topology was done under the assumption that the topological structure is certain and does not change over time. New challenges to deal with the dynamic and uncertain topological structure require a reexamination of this fundamental assumption. In the previous work we proposed a dynamic logic methodology for capturing, representing, and recording uncertain and dynamic topology and geometry jointly for spatial data fusion and mining. This work presents a further elaboration and formalization of this methodology as well as its application for modeling vector-to-vector and raster-to-vector conflation/registration problems and automated feature extraction from the imagery.


Copyright 2012 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.

This article was originally published in Geospatial InfoFusion II. The full-text article from the publisher can be found here.


​Geospatial InfoFusion II


© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)