Document Type


Department or Administrative Unit

Biological Sciences

Publication Date



Allopatry is commonly used to predict boundaries in species delimitation investigations under the assumption that currently allopatric distributions are indicative of reproductive isolation; however, species ranges are known to change over time. Incorporating a temporal perspective of geographic distributions should improve species delimitation; to explore this, we investigate three species of western Plethodon salamanders that have shifted their ranges since the end of the Pleistocene. We generate species distribution models (SDM) of the current range, hindcast these models onto a climatic model 21 Ka, and use three molecular approaches to delimit species in an integrated fashion. In contrast to expectations based on the current distribution, we detect no independent lineages in species with allopatric and patchy distributions (Plethodon vandykei and Plethodon larselli). The SDMs indicate that probable habitat is more expansive than their current range, especially during the last glacial maximum (LGM) (21 Ka). However, with a contiguous distribution, two independent lineages were detected in Plethodon idahoensis, possibly due to isolation in multiple glacial refugia. Results indicate that historical SDMs are a better predictor of species boundaries than current distributions, and strongly imply that researchers should incorporate SDM and hindcasting into their investigations and the development of species hypotheses.


This is a pre-copyedited, author-produced version of an article accepted for publication in Systematic Biology following peer review. The version of record is available online here.


Systematic Biology


© The Author(s) 2014.