Effect of Vitamin D Supplementation on 25(OH)D Status in Elite Athletes With Spinal Cord Injury

Document Type


Department or Administrative Unit

Nutrition Exercise and Health Sciences

Publication Date



Recent studies suggest that a substantial proportion of athletes with spinal cord injury have insufficient 25(OH) vitamin D (25(OH)D) status, which may be associated with decreased muscle strength. This study consisted of two parts: (a) to examine the effects of a 12- to 16-week vitamin D3 supplementation protocol on 25(OH)D concentration and (b) to determine whether subsequent 25(OH)D status impacts muscle performance in elite athletes with spinal cord injury. Thirty-four members (age: 33 ± 15 years, weight: 69.6 ± 28.2 kg, and height: 170.2 ± 25.4 cm) of the U.S. and Canadian Paralympic program participated in the study. 25(OH)D concentrations and performance measures (handgrip strength and 20-m wheelchair sprint) were assessed pre- and postsupplementation. Participants were assigned a vitamin D3 supplementation protocol based on initial 25(OH)D concentrations. Participants with deficient 25(OH)D status (/L) received 50,000 IU/week for 8 weeks, and participants with insufficient status (50–75 nmol/L) received 35,000 IU/week for 4 weeks, after which both received a maintenance dose of 15,000 IU/week. Participants with sufficient status (>75 nmol/L) received the maintenance dose of 15,000 IU/week. 25(OH)D concentrations increased significantly (p < .001; 66.3 ± 24.3 nmol/L and 111.3 ± 30.8 nmol/L pre- and postsupplementation, respectively). About 26% of athletes had sufficient 25(OH)D concentrations presupplementation, and 91% had sufficient concentrations postsupplementation. About 62% of participants improved handgrip strength postsupplementation with no change in 20-m wheelchair sprint performance. The supplementation protocol was effective for achieving sufficient vitamin D concentrations in elite athletes with spinal cord injury.


This article was originally published in International Journal of Sport Nutrition and Exercise Metabolism. The full-text article from the publisher can be found here.

Due to copyright restrictions, this article is not available for free download from ScholarWorks @ CWU. Access is available to CWU faculty, staff, and students through EBSCOHost


International Journal of Sport Nutrition and Exercise Metabolism


© 2019 Human Kinetics, Inc.