Document Type


Department or Administrative Unit

Geological Sciences

Publication Date



A vertical exposure across the principal thrust scarp of the 1999 Mw 7.6 earthquake allows quantification of fault slip. The exposure is located on the active Chelungpu fault near Wufeng, along the range front of the fold-and-thrust belt in western Taiwan. The 1999 surface ruptures at the Wufeng site are characterized by a west-facing 2 to 3 m high principal thrust scarp and an east-facing lesser backthrust scarp. We mapped a 15 m-long, 5 m-deep exposure across the principal thrust scarp and characterized complex deformation structures, which include a main basal thrust fault, a wedge thrust, and a pop-up anticlinal fold with two secondary opposing thrust faults. The vertical displacement across the principal thrust scarp is measured directly from the offsets of the same sedimentary horizons between the hangingwall and the footwall. The average vertical displacement is 2.2±0.1 m, and the maximum displacement is 2.5 m, at the crest of the small pop-up fold. Horizontal displacement estimates were determined using line- and area-balancing methods. With line-length methods we estimated a horizontal displacement of 3.3±0.3 m across the principal scarp for four sedimentary horizons. For area balancing, first we selected three horizontal soil/sand deposits with a total thickness of about 0.5 m. The estimate yields an average horizontal displacement of 4.8±1.0 m. Using these individual and relatively thin stratigraphic layers yielded significant standard deviations in displacement estimates as a result of thickness variations. Second, we used the 3 m-thick overbank soil/sand and the lower part of fluvial pebble/cobble to calculate a horizontal displacement of 2.6±0.2 m with the area-balancing technique. According to the geometry of the dip angle (35–40°) of the basal thrust, the line-length measurement and the 3 m-thick package area balancing both provided reasonable results of horizontal displacement. By comparing the different deposits applied to the line- and area-balancing methods, we interpret that decoupling of deformation occurred between the lower fluvial gravels and the upper overbank sand and mud deposits. Due to lesser confining pressure at the surface, additional deformation occurred in the upper 1–2 m thick overbank deposits. This additional deformation yielded further vertical uplift of 0.3–0.5 m and horizontal displacement of 0.2–0.8 m around the core of the pop-up fold. Our work suggests that determination of slip across surface thrust ruptures varies as a function of the mechanical behavior of young late Quaternary deposits.


Please note: This is the author’s version of a work. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Asian Earth Sciences, volume 23(2), 2004, DOI:


Journal of Asian Earth Sciences


Copyright © 2003 Elsevier Ltd. All rights reserved.