Reactivity of Electrochemically Generated Rhenium (II) Tricarbonyl α-Diimine Complexes: A Reinvestigation of the Oxidation of Luminescent Re(CO)3(α-Diimine)Cl and Related Compounds

Document Type


Department or Administrative Unit


Publication Date



The oxidative electrochemistry of luminescent rhenium (I) complexes of the type Re(CO)3(LL)Cl, 1, and Re(CO)3(LL)Br, 2, where LL is an α-diimine, was re-examined in acetonitrile. These compounds undergo metal-based one-electron oxidations, the products of which undergo rapid chemical reaction. Cyclic voltammetry results imply that the electrogenerated rhenium (II) species 1+ and 2+ disproportionate, yielding [Re(CO)3(LL)(CH3CN)]+, 7, and additional products. Double potential step chronocoulometry experiments confirm that 1+ and 2+ react via second-order processes and, furthermore, indicate that the rate of disproportionation is influenced by the basicity and steric requirements of the α-diimine ligands. The simultaneous generation of rhenium (I) and (III) carbonyl products was detected upon the bulk oxidation of 1 using infrared spectroelectrochemistry. The rhenium (III) products are assigned as [Re(CO)3(LL)Cl2]+, 5; an inner-sphere electron-transfer mechanism of the disproportionation is proposed on the basis of the apparent chloride transfer. Chemically irreversible two-electron reduction of 5 yields 1 and Cl. No direct spectroscopic evidence was obtained for the generation of rhenium (III) tricarbonyl bromide disproportionation products, [Re(CO)3(LL)Br2]+, 6; this is attributed to their relatively rapid decomposition to 7 and dibromine. In addition, the 17-electron radical cations, 7+, were successfully characterized using infrared spectroelectrochemistry.


This article was originally published in Inorganic Chemistry. The full-text article from the publisher can be found here.

Due to copyright restrictions, this article is not available for free download from ScholarWorks @ CWU.


Inorganic Chemistry


© 2008 American Chemical Society