Abstract
Consider the function T (n) defined on the positive integers as follows. If n is even, T (n) = n/2. If n is odd, T (n) = 3n + 1. The Collatz Conjecture states that for any integer n, the sequence n, T (n), T (T (n)), . . . will eventually reach 1. We consider several generalizations of this function, focusing on functions which replace "3n + 1" with "3n + b" for odd b. We show that for all odd b < 400, and all integers n ≤ 106, iterating this function always results in a finite cycle of values. Furthermore, we empirically observe several interesting patterns in the lengths of these cycles for several classes of values of b.Faculty Sponsor: Dr. Dominic Klyve
Recommended Citation
Messerman, Hayden R.; LeBeau, Joey; and Klyve, Dominic
(2023)
"Generalized Collatz Functions: Cycle Lengths and Statistics,"
International Journal of Undergraduate Research and Creative Activities: Vol. 4:
Iss.
1, Article 3.
DOI: https://doi.org/10.7710/2168-0620.1002
Available at:
https://digitalcommons.cwu.edu/ijurca/vol4/iss1/3
Article download data priot to October 2023
956