Document Type

Article

Department or Administrative Unit

Geological Sciences

Publication Date

4-8-2008

Abstract

Refinements to GPS analyses in which we factor geodetic time series to better estimate both reference frames and transient deformation resolve 34 slow slip events located throughout the Cascadia subduction zone from 1997 through 2005. Timing of transient onset is determined with wavelet transformation of geodetic time series. Thirty continuous stations are included in this study, ranging from northern California to southwestern British Columbia. Our improvements in analysis better resolve the largest creep events and also identify many smaller events. At 48.5 degrees N latitude, a 14-month average recurrence interval has been observed over eight events since 1997. Farther north along Vancouver Island a host of smaller events with a distinct 14-month periodicity also occurs. In southern Washington State, some of the largest transient displacements are observed but lack any obvious periodicity in their recurrence. Along central Oregon, an 18-month recurrence is evident, while in northern California an 11-month periodicity continues through 2005. We invert GPS offsets of the 12 best recorded events for thrust slip along the plate interface using a cross-validation scheme to derive optimal smoothing parameters. These 12 events have equivalent moment magnitudes between 6.3 and 6.8 and have 2–3 cm of slip. Unlike other subduction zones, no long-duration events are observed, and cumulative surface deformation is consistently less than 0.6 cm. The many newly resolved smaller transient events in Cascadia show that slow slip events occur frequently with GPS best capturing only the largest events. It is likely that slow slip events occur more frequently at levels not detectable with GPS.

Journal

Journal of Geophysical Research

Rights

Copyright © 2008 the American Geophysical Union

Included in

Geology Commons

Share

COinS