Document Type

Conference Proceeding

Department or Administrative Unit

Computer Science

Publication Date

2018

Abstract

Recent advances in the face detection (FD) and recognition (FR) technology may give an impression that the problem of face matching is essentially solved, e.g. via deep learning models using thousands of samples per face for training and validation on the available benchmark data-sets. Human vision system seems to handle face localization and matching problem differently from the modern FR systems, since humans detect faces instantly even in most cluttered environments, and often require a single view of a face to reliably distinguish it from all others. This prompted us to take a biologically inspired look at building a cognitive architecture that uses artificial neural nets at the face detection stage and adapts a single image per person (SIPP) approach for face image matching.

Comments

This article was originally published Open Access in Procedia Computer Science. The full-text article from the publisher can be found here.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Journal

Procedia Computer Science

Rights

© 2018 The Authors

Share

COinS