Document Type
Article
Department or Administrative Unit
Geological Sciences
Publication Date
1-23-2009
Abstract
The direction and magnitude of the geomagnetic field vary both spatially and temporally and undergo significant departures from that of a geocentric axial dipole. In order to properly characterize persistent behaviors, time-averaged field models must be based on the highest quality data. Here we present full-vector paleomagnetic data for volcanic units exposed in the southeast quadrant of the island of Socorro, Mexico. We carried out a joint expedition between the Scripps Institution of Oceanography and the Universidad Nacional Autónoma México to Isla Socorro in January of 2005 during which we collected oriented paleomagnetic samples from 21 sites, representing as many as 10 different volcanic units (the oldest of which is ∼540 ka). We subjected over 100 specimens to the most up-to-date paleointensity methods, and included the standard reliability checks. In an earlier study, Bohrson et al. (1996) proposed a series of widespread eruptive events, based on similarities of argon/argon dates. Paleointensity from specimens that conform to the strictest acceptance criteria are available from both the (unoriented) original sample collection and our fully oriented (but as yet undated) new collection. Correlation between the two collections is however problematic. The time-averaged direction from Socorro is consistent with that expected from a geocentric axial dipole, and the time-averaged intensity is 30.0±7.1 μT, equivalent to a virtual axial dipole moment (VADM) of 67.6±16.0 ZAm2.
Recommended Citation
Sbarbori, E., Tauxe, L., Goguitchaichvili, A. et al. Paleomagnetic behavior of volcanic rocks from Isla Socorro, Mexico. Earth Planet Sp 61, 191–204 (2009). https://doi.org/10.1186/BF03352899
Journal
Earth, Planets and Space
Rights
Copyright © The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
Included in
Geology Commons, Geophysics and Seismology Commons, Other Earth Sciences Commons, Volcanology Commons
Comments
This article was originally published Open Access in Earth, Planets and Space. The full-text article from the publisher can be found here.