Document Type
Article
Department or Administrative Unit
Biological Sciences
Publication Date
4-25-2014
Abstract
Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A–D (1–4) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 1–5, 7, and 8 were assigned using electronic circular dichroism spectroscopy. Antimicrobial bioassays revealed significant activity concentrated in the plant roots. Compounds 1–6 exhibited MICs of 2–8 μg/mL against Streptococcus mutans, Bacillus cereus, and oxacillin-sensitive and -resistant Staphylococcus aureus. Aerial metabolites 7–10 were inactive against these organisms, but the presence of 7 and 8 prompted investigation of the antiinsectan activity of D. searlsiae metabolites toward the major crop pest Spodoptera frugiperda (fall armyworm). While compounds 1–10 all caused significant reductions in larval growth rates, associated mortality (33–66%) was highest with flavanone 4 and rotenoids 7 and 8. These findings suggest a differential allocation of antimicrobial and antiinsectan plant resources to root and aerial portions of the plant, respectively.
Recommended Citation
Belofsky, G., Aronica, M., Foss, E., Diamond, J., Santana, F., Darley, J., Dowd, P. F., Coleman, C. M., & Ferreira, D. (2014). Antimicrobial and Antiinsectan Phenolic Metabolites ofDalea searlsiae. Journal of Natural Products, 77(5), 1140–1149. https://doi.org/10.1021/np401083g
Journal
Journal of Natural Products
Rights
Copyright © 2014 The American Chemical Society and American Society of Pharmacognosy
Included in
Biochemistry Commons, Biology Commons, Botany Commons, Chemistry Commons, Plant Biology Commons
Comments
This article was originally published in Journal of Natural Products with an ACS AuthorChoice License. The full-text article from the publisher can be found here.