Document Type
Article
Department or Administrative Unit
Geological Sciences
Publication Date
12-2013
Abstract
Many of the key processes governing fast glacier flow involve interaction between a glacier and its basal hydrological system, which is hidden from direct observation. Passive seismic monitoring has shown promise as a tool for remotely monitoring basal processes, but lack of glacier-bed access prevents clear understanding of the relationships between subglacial processes and corresponding seismic emissions. Here we describe direct measurements of basal hydrology, sliding, and broadband seismicity made in a unique subglacial facility in Norway during the onset of two summer melt seasons. In the most pronounced of these episodes, rapid delivery of surface meltwater to the bed briefly enhanced basal slip following a period of elevated high-frequency seismic activity related to surface crevassing. Subsequent ground tilt derived from ultralong-period seismic signals was associated with subglacial bedrock deformation during transient pressurization of the basal hydraulic system. These signals are interpreted to represent hydraulic jacking as the supply of water to the bed exceeded the capacity of the hydraulic system. Enhanced slip terminated 2.5 h after it started, when ice-bed decoupling or increased connectivity in the basal cavity network relieved cavity overpressure. The results support theoretical models for hydraulic jacking and illustrate how melt-induced increases in speed can be short lived if cavity growth or ice-bed decoupling allows basal water more efficient drainage.
Recommended Citation
Moore, P. L., Winberry, J. P., Iverson, N. R., Christianson, K. A., Anandakrishnan, S., Jackson, M., Mathison, M. E., & Cohen, D. (2013). Glacier slip and seismicity induced by surface melt. Geology, 41(12), 1247–1250. https://doi.org/10.1130/g34760.1
Journal
Geology
Rights
© 2013 Geological Society of America
Included in
Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Glaciology Commons, Hydrology Commons, Tectonics and Structure Commons
Comments
This article was originally published in Geology. The full-text article from the publisher can be found here.
The download link on this page is to an accepted manuscript version of this article and may not be the final version of this article.