Files
Download Full Text (2.2 MB)
Document Type
Book
Description
The project was motivated by a need to create a device that would cause a small truck or trailer bed to lift up quickly and dump its contents. This would eliminate the need to use manual physical labor, which is both slow and exhausting. Additional design constraints require the stroke and diameter of the cylinder to be 6” x2”. A design was conceived with the intent to incorporate a less costly device onto an existing trailer frame that would lift the bed and dump the load. With this in mind, a scissor lift device would have two basic requirements, first to lift 500 pounds and second to achieve a 40 degree angle of lift. The intended design is called a scissor lift. Lifting mechanisms for dump trucks are too large and expensive for use on a small six foot trailer. Designing a lift to use a smaller cylinder to accomplish the same task as a larger lift, was accomplished with engineering design. This smaller cylinder presents a geometric challenge so there is enough lift to tilt and dump the load. To accomplish this, the lift will have to accommodate the cylinder to transfer its force through the arms. The calculations predicted that a .5 gpm hydraulic pump would take 62 seconds to lift 500 pounds, dump and lower the load. Initial tests indicated a tilt goes to 39 degrees.
Publication Date
Spring 5-27-2015
Recommended Citation
Pate, Zachary, "Dump Bed Lifting Mechanism" (2015). Mechanical Engineering and Technology Senior Projects. 21.
https://digitalcommons.cwu.edu/cwu_met/21
Rights
For Educational use; no other permissions given. Copyright to this resource is held by the content creator/s and is provided here for educational purposes only. It may not be reproduced or distributed in any format without written permission of the copyright owner. For more information, please contact the Dr. James E. Brooks Library at archive@cwu.edu.
Publisher
Central Washington University
City
Ellensburg, Washington
Keywords
Mechanical engineering, Machine parts industry
Disciplines
Mechanical Engineering
Language
English
Format
document/pdf