Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion
Document Type
Article
Department or Administrative Unit
Geological Sciences
Publication Date
3-15-2018
Abstract
The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010–2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1–10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.
Recommended Citation
Barcheck, C. G., Tulaczyk, S., Schwartz, S. Y., Walter, J. I., & Winberry, J. P. (2018). Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion. Earth and Planetary Science Letters, 486, 54–60. https://doi.org/10.1016/j.epsl.2017.12.046
Journal
Earth and Planetary Science Letters
Rights
© 2018 Elsevier B.V. All rights reserved.
Comments
This article was originally published in Earth and Planetary Science Letters. The full-text article from the publisher can be found here.
Due to copyright restrictions, this article is not available for free download from ScholarWorks @ CWU.