Dimension of images of large level sets

Document Type

Article

Department or Administrative Unit

Mathematics

Publication Date

2-24-2022

Abstract

Let k be a natural number. We consider k-times continuously differentiable real-valued functions f:E→R, where E is some interval on the line having positive length. For 0<α<1 let Iα(f) denote the set of values y∈R whose preimage f−1(y) has Hausdorff dimension at least α. We consider how large can be the Hausdorff dimension of (f), as f ranges over the set of all k-times continuously differentiable functions from E into R. We show that the sharp upper bound on dimIα(f) is (1−α)/k.

Comments

This article was originally published in Mathematica Scandinavica. The full-text article from the publisher can be found here.

Due to copyright restrictions, this article is not available for free download from ScholarWorks @ CWU.

Journal

Mathematica Scandinavica

Share

COinS